Solveeit Logo

Question

Question: A man can throw a stone with initial speed 10\[m\]⁄\[s\]. Find the maximum horizontal distance to wh...

A man can throw a stone with initial speed 10mmss. Find the maximum horizontal distance to which he throw the stone in a room of height hh mm for, (1) h=2mh = 2m and (2) h=4mh = 4m.

Explanation

Solution

Firstly consider the motion is projectile and find the equations of projectile motion. Substitute the values in the equation of motion and find the angle value. After that, use the maximum height formula and calculate the maximum height.

Formula used:
The horizontal range of a projectile motion is given by
HH=u2sin2θ2g\dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}
Here, HHis maximum height,uuis initial speed andggis gravity.
Hmax{H_{\max }}= u2sin2θ2g\dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}
Here Hmax{H_{\max }}is the maximum height.

Complete step by step solution:
Given that, Initial speed of stone = 10 mmss.
(1) At height h=2mh = 2m
HH= u2sin2θ2g\dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}
Here, HHis maximum height,uuis initial speed andggis gravity.
Given, h=2mh = 2m
Substitute given values
2=(10)2×sin2θ2×102 = \dfrac{{{{\left( {10} \right)}^2} \times {{\sin }^2}\theta }}{{2 \times 10}}
    \implies sinθ=23\sin \theta = \sqrt {\dfrac{2}{3}}
So, cosθ=13\cos \theta = \sqrt {\dfrac{1}{3}}
RR= u2sin2θg\dfrac{{{u^2}\sin 2\theta }}{g} ( ∴sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta )
Here, RRrepresents range and ggis gravity.
By substituting values
RR= (10)2×2×(23)(12)10\dfrac{{{{\left( {10} \right)}^2} \times 2 \times \left( {\sqrt {\dfrac{2}{3}} } \right)\left( {\sqrt {\dfrac{1}{2}} } \right)}}{{10}}
    \implies RR= 4\sqrt 6 $$$$m
(2) At height h=4mh = 4m
HH= u2sin2θ2g\dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}
Here, HHis maximum height,uuis initial speed andggis gravity.
Given, h=4mh = 4m
Substitute given values
4=(10)2sin2θ2g4 = \dfrac{{{{\left( {10} \right)}^2}{{\sin }^2}\theta }}{{2g}}
    \implies sinθ=45\sin \theta = \sqrt {\dfrac{4}{5}}
So, cosθ=15\cos \theta = \sqrt {\dfrac{1}{5}}
    \implies RR= u2sin2θg\dfrac{{{u^2}\sin 2\theta }}{g} ( ∴sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta )
Here, RRrepresents range and ggis gravity.
By substituting values
RR= (10)2×2×451510\dfrac{{{{\left( {10} \right)}^2} \times 2 \times \sqrt {\dfrac{4}{5}} \sqrt {\dfrac{1}{5}} }}{{10}}
    \implies RR= 88 mm.

Note:
The maximum height and the maximum horizontal range of the object in projectile motion always depends on the angle by which the object is thrown.
The value of the maximum velocity will change if the direction and the angle changes.