Solveeit Logo

Question

Physics Question on Magnetism and matter

A magnetic needle suspended parallel to a magnetic field requires 3J\sqrt 3 \,J of work to turn it through 60.60^\circ. The torque needed to maintain the needle in this position will be

A

23J2 \sqrt3\, J

B

3J\sqrt3\, J

C

3J3\, J

D

32J\frac{3}{2}\, J

Answer

3J3\, J

Explanation

Solution

Work done in changing the orientation of a magnetic needle of magnetic moment M in a magnetic field B from position θ1\theta_1 to θ2\theta_2 is given by
W=MB(cosθ1cosθ2)W=MB(cos\theta_1-cos\theta_2)
Here, θ1=0,θ2=60\theta_1=0^\circ, \theta_2 = 60^\circ
\, \, \, \, =MB \bigg(1-\frac{1}{2}\bigg)=\frac{MB}{2}\hspace30mm ...(i)
The torque on the needle is
τ=M×B\, \, \, \, \tau =\overline{M} \times \overline{B}
In magnitude,
\tau = M B sin\, \theta =M B sin\, \, 60^\circ = \frac{\sqrt3}{2}MB \hspace15mm ...(ii)
Dividing (ii) by (i), we get
τW=3\frac{\tau}{W} =\sqrt3
τ=3W=3×3J=3J\tau=\sqrt3W =\sqrt3 \times \sqrt3\, J =3\, J