Solveeit Logo

Question

Physics Question on Magnetism and matter

A magnetic needle suspended in a vertical plane at 3030^{\circ} from the magnetic meridian makes an angle 4545^{\circ} with the horizontal. What will be the true angle of dip ?

A

tan1(32)\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)

B

tan1(3)\tan ^{-1}(\sqrt{3})

C

4545^{\circ}

D

3030^{\circ}

Answer

tan1(32)\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)

Explanation

Solution

Let BeB_{e} be the magnetic field at some point. H and V be the horizontal and vertical components of BeB_{e} and θ\theta is the actual angle of dip at the same place.
H=BecosθH =B_{e} \cos \theta
and V=BesinθV =B_{e} \sin \theta
VH=tanθ\therefore \frac{V}{H} =\tan \theta
or tanθ=VH\tan \theta =\frac{V}{H} ...(i)
In a vertical plane at 3030^{\circ} from the magnetic meridian, the horizontal component is
H=Hcos30=H32H'=H \cos 30^{\circ}=\frac{H \sqrt{3}}{2}
While vertical component is still V. Therefore, apparent dip will be given by
tanθ=VH=VH3/2=2VH3\tan \theta'=\frac{V}{H'}=\frac{V}{H \sqrt{3} / 2}=\frac{2 V}{H \sqrt{3}} ...(ii)
Dividing E(i) by E(ii),we have
tanθtanθ=VH2VH3\frac{\tan \theta}{\tan \theta'} =\frac{\frac{V}{H}}{\frac{2 V}{H \sqrt{3}}}
=32=\frac{\sqrt{3}}{2}
or tanθ=32tanθ\tan \theta =\frac{\sqrt{3}}{2} \tan \theta'
=32tan45(θ=45)=\frac{\sqrt{3}}{2} \tan 45^{\circ} \left(\because \theta=45^{\circ}\right)
=32=\frac{\sqrt{3}}{2}
θ=tan1(32)\therefore \theta =\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)