Solveeit Logo

Question

Question: A loop, made of straight edges has six corners at A(0, 0, 0), B(L, 0, 0), C(L, L, 0), D(0, L, 0), E(...

A loop, made of straight edges has six corners at A(0, 0, 0), B(L, 0, 0), C(L, L, 0), D(0, L, 0), E(0, L, L) and F(0, 0, L). A magnetic field = B0 () T is present in the region. The flux passing through the loop ABCDEFA (in that order) is

A

B0L2 Wb

B

2 B0 L2 Wb

C

2\sqrt { 2 } B0 L2L ^ { 2 } Wb

D

4 B0 L2 Wb

Answer

2 B0 L2 Wb

Explanation

Solution

here, B=B0(i^+k^)T\overrightarrow { \mathrm { B } } = \mathrm { B } _ { 0 } ( \hat { \mathrm { i } } + \hat { \mathrm { k } } ) \mathrm { T }

Area vector of ABCD =L2k^= L ^ { 2 } \hat { k }

Area vector of DEFA =L2i^= L ^ { 2 } \hat { \mathbf { i } }

Total area vector A=L2(i^+j^)\vec { A } = L ^ { 2 } ( \hat { i } + \hat { j } )

Total magnetic flux

ϕ=BA=B0(i^+j^)L2(i^+k^)\phi = \vec { B } \cdot \vec { A } = B _ { 0 } ( \hat { i } + \hat { j } ) \cdot L ^ { 2 } ( \hat { i } + \hat { k } )