Solveeit Logo

Question

Question: A long string under tension of 100 N has one end at x = 0. A sinusoidal wave is generated at x = 0 w...

A long string under tension of 100 N has one end at x = 0. A sinusoidal wave is generated at x = 0 whose equation is given by
y=(0.01cm)sin[(πx10m)50πtsec]y=\left( 0.01cm \right)\sin \left[ \left( \dfrac{\pi x}{10}m \right)-50\pi t\sec \right]
Find the average power transmitted by the wave.

Explanation

Solution

We have a sinusoidal equation of wave as: y=(0.01cm)sin[(πx10m)50πtsec]y=\left( 0.01cm \right)\sin \left[ \left( \dfrac{\pi x}{10}m \right)-50\pi t\sec \right]
Compare the given equation with the standard form, i.e.: y=Asin[kxωt]y=A\sin \left[ kx-\omega t \right] and get the value of A, k and ω\omega .
Now, we need to find the average power transmitted by the wave. It is given by:
P=12ω2A2Tμ\left\langle P \right\rangle =\dfrac{1}{2}{{\omega }^{2}}{{A}^{2}}\sqrt{T\mu }, where μ=Tv2\mu =\dfrac{T}{{{v}^{2}}} , v=ωkv=\dfrac{\omega }{k} and T=2πωT=\dfrac{2\pi }{\omega }. Put all the values in the formula and find the average power transmitted.

Complete step by step answer:
We have a sinusoidal equation of wave as: y=(0.01cm)sin[(πx10m)50πtsec]......(1)y=\left( 0.01cm \right)\sin \left[ \left( \dfrac{\pi x}{10}m \right)-50\pi t\sec \right]......(1)
By comparing equation (1) with y=Asin[kxωt]y=A\sin \left[ kx-\omega t \right], we get:
A=0.01cm=104m k=π10m ω=50πsec \begin{aligned} & A=0.01cm={{10}^{-4}}m \\\ & k=\dfrac{\pi }{10}m \\\ & \omega =50\pi \sec \\\ \end{aligned}
Now, using the above data, find the value of μ,v and T\mu ,v\text{ and }T
We get:

& T=\dfrac{2\pi }{\omega } \\\ & =\dfrac{2\pi }{50\pi } \\\ & =\dfrac{1}{25}\sec \end{aligned}$$ $\begin{aligned} & v=\dfrac{50\pi }{\dfrac{\pi }{10}} \\\ & =500m/s \end{aligned}$ $$\begin{aligned} & \mu =\dfrac{\dfrac{1}{25}}{{{\left( 500 \right)}^{2}}} \\\ & =\dfrac{1}{125\times {{10}^{4}}}{{m}^{-2}}{{s}^{2}} \end{aligned}$$ Now, put all the values to find average power transmitted by the wave. We get: $\begin{aligned} & \left\langle P \right\rangle =\dfrac{1}{2}{{\left( 50\pi \right)}^{2}}{{\left( {{10}^{-4}} \right)}^{2}}\sqrt{\left( \dfrac{1}{25} \right)\left( \dfrac{1}{125\times {{10}^{4}}} \right)} \\\ & =4.93\times {{10}^{-8}}W \end{aligned}$$$\begin{aligned} & \mu =\dfrac{\dfrac{1}{25}}{{{\left( 500 \right)}^{2}}} \\\ & =\dfrac{1}{125\times {{10}^{4}}}{{m}^{-2}}{{s}^{2}} \end{aligned}$$ **Note:** The energy associated with a traveling wave in a stretched string is conveniently expressed as the energy per wavelength. Since this amount of energy is transported a distance of one wavelength along the string in one period, this expression can be used to calculate the power transmitted along a string. So, the power transmitted by a string is given by the formula: $\left\langle P \right\rangle =\dfrac{1}{2}{{\omega }^{2}}{{A}^{2}}\sqrt{T\mu }$.