Solveeit Logo

Question

Physics Question on Electromagnetic induction

A long solenoid with radius 2 cm carries a current of 2A. The solenoid is 70 cm long and is composed of 300 turns of wire. Calculate flux linked with a circular surface if it has radius greater than 2 cm and axis of solenoid subtends an angle of 6060^\circ with the normal to the area (the centre of circular surface being on the axis of solenoid)

A

6×106Wb6\times10^{-6}\,Wb

B

5×105Wb5\times10^{-5}\,Wb

C

6.76×107Wb6.76\times10^{-7}\,Wb

D

7.6×107Wb7.6\times10^{-7}\,Wb

Answer

6.76×107Wb6.76\times10^{-7}\,Wb

Explanation

Solution

For an ideal solenoid BoutB_{\text{out}} = 0 and Bin=μ04π.4πNilB_{\text{in}} = \frac{\mu_0}{4 \pi} . 4 \pi \frac{Ni}{l} =4π×107×300×20.7=1.076×103T=\frac{4 \pi \times 10^{-7} \times 300 \times 2}{0.7} = 1.076 \times 10^{-3} \,T. And ϕ=BAcosθ\phi = BA \,cos \,\theta or ϕ=ϕin+ϕout\phi = \phi_{\text{in}} + \phi_{\text{out}} =Bin×(πr2)×cos60+0= B_{\text{in}} \times (\pi r^2) \times \, cos\, 60\,{\circ} + 0 (Bout=0)( \because \, B_{\text{out}} = 0) =1.076×103)×(π×4×104)×12= 1.076 \times 10^{-3}) \times ( \pi \times 4 \times 10^{-4}) \times \frac{1}{2} =13.52×107×12=6.76×107Wb= 13.52 \times 10^{-7} \times \frac{1}{2} = 6.76 \times 10^{-7}\, Wb