Solveeit Logo

Question

Physics Question on Magnetic Field

A long conducting wire carrying a current II is bent at 120120^{\circ} (see figure). The magnetic field BB at a point PP on the right bisector of bending angle at a distance d from the bend is (μ0\left(\mu_{0}\right. is the permeability of free space)

A

3μ0I2πd\frac{3\mu_{0}I}{2\pi d}

B

μ0I2πd\frac{\mu_{0}I}{2\pi d}

C

μ0I3πd\frac{\mu_{0}I}{\sqrt{3}\pi d}

D

3μ0I2πd\frac{\sqrt{3}\mu_{0}I}{2\pi d}

Answer

3μ0I2πd\frac{\sqrt{3}\mu_{0}I}{2\pi d}

Explanation

Solution

We know that Bnet=2[μ0i4πr(sinθ1+sinθ2)]B_{ net }=2\left[\frac{\mu_{0} \,i}{4 \,\pi r}\left(\sin \theta_{1}+\sin \theta_{2}\right)\right] =2[μ04π×id32×(sin90+sin30)=2\left[\frac{\mu_{0}}{4 \pi} \times \frac{i}{\frac{d \sqrt{3}}{2}} \times\left(\sin 90^{\circ}+\sin 30^{\circ}\right)\right. =2[μ04π×2id3×(1+12)]=2\left[\frac{\mu_{0}}{4 \pi} \times \frac{2 i}{d \sqrt{3}} \times\left(1+\frac{1}{2}\right)\right] =2[μ04π×2id3×32]=3μ0i2πd=2\left[\frac{\mu_{0}}{4 \pi} \times \frac{2 i}{d \sqrt{3}} \times \frac{3}{2}\right]=\frac{\sqrt{3} \mu_{0} i}{2 \pi d}