Solveeit Logo

Question

Question: A long coaxial cable consists of two hollow concentric cylinders of radii a and b. The central condu...

A long coaxial cable consists of two hollow concentric cylinders of radii a and b. The central conductor of the cable carries a steady current I and outer conductor provides the return path of the same current. Calculate the energy stored in the magnetic field 'l' of such a cable –

A

μ0I24π\frac { \mu _ { 0 } I ^ { 2 } \ell } { 4 \pi }loge

B

μ0I24π\frac { \mu _ { 0 } I ^ { 2 } \ell } { 4 \pi }loge

C
D

μ0I24π\frac { \mu _ { 0 } I ^ { 2 } \ell } { 4 \pi }loge

Answer

μ0I24π\frac { \mu _ { 0 } I ^ { 2 } \ell } { 4 \pi }loge

Explanation

Solution

B = μ0I2πr\frac { \mu _ { 0 } \mathrm { I } } { 2 \pi \mathrm { r } }

Volume of element = 2prdr × l Energy density

= = μ02I24π2r2\frac { \mu _ { 0 } ^ { 2 } I ^ { 2 } } { 4 \pi ^ { 2 } r ^ { 2 } }

Energy = × 2prdrl