Solveeit Logo

Question

Question: (a) $log_{x+1}(x^2+x-6)^2=4$...

(a) logx+1(x2+x6)2=4log_{x+1}(x^2+x-6)^2=4

Answer

x=1

Explanation

Solution

The domain requires x+1>0x+1 > 0, x+11x+1 \neq 1, and (x2+x6)2>0(x^2+x-6)^2 > 0. This leads to x(1,0)(0,2)(2,)x \in (-1, 0) \cup (0, 2) \cup (2, \infty). The equation (x+1)4=(x2+x6)2(x+1)^4 = (x^2+x-6)^2 implies (x+1)2=x2+x6(x+1)^2 = x^2+x-6 or (x+1)2=(x2+x6)(x+1)^2 = -(x^2+x-6). Case 1: (x+1)2=x2+x6    x2+2x+1=x2+x6    x=7(x+1)^2 = x^2+x-6 \implies x^2+2x+1 = x^2+x-6 \implies x = -7 (rejected). Case 2: (x+1)2=(x2+x6)    x2+2x+1=x2x+6    2x2+3x5=0(x+1)^2 = -(x^2+x-6) \implies x^2+2x+1 = -x^2-x+6 \implies 2x^2+3x-5 = 0. Factoring gives (2x+5)(x1)=0(2x+5)(x-1) = 0, so x=1x=1 or x=5/2x=-5/2. x=1x=1 is valid. x=5/2x=-5/2 is rejected. The only valid solution is x=1x=1.