Question
Question: (a) $log_{x+1}(x^2+x-6)^2=4$...
(a) logx+1(x2+x−6)2=4

Answer
x=1
Explanation
Solution
The domain requires x+1>0, x+1=1, and (x2+x−6)2>0. This leads to x∈(−1,0)∪(0,2)∪(2,∞). The equation (x+1)4=(x2+x−6)2 implies (x+1)2=x2+x−6 or (x+1)2=−(x2+x−6). Case 1: (x+1)2=x2+x−6⟹x2+2x+1=x2+x−6⟹x=−7 (rejected). Case 2: (x+1)2=−(x2+x−6)⟹x2+2x+1=−x2−x+6⟹2x2+3x−5=0. Factoring gives (2x+5)(x−1)=0, so x=1 or x=−5/2. x=1 is valid. x=−5/2 is rejected. The only valid solution is x=1.