Solveeit Logo

Question

Question: $\log_3(\log_9x + \frac{1}{2} + 9^x) = 2x$...

log3(log9x+12+9x)=2x\log_3(\log_9x + \frac{1}{2} + 9^x) = 2x

Answer

13\frac{1}{3}

Explanation

Solution

The given equation is: log3(log9x+12+9x)=2x\log_3\left(\log_9x + \frac{1}{2} + 9^x\right) = 2x Rewrite the right side of the equation using the property a=logb(ba)a = \log_b(b^a): 2x=log3(32x)=log3((32)x)=log3(9x)2x = \log_3(3^{2x}) = \log_3((3^2)^x) = \log_3(9^x) The equation becomes: log3(log9x+12+9x)=log3(9x)\log_3\left(\log_9x + \frac{1}{2} + 9^x\right) = \log_3(9^x) For the logarithms to be equal, their arguments must be equal, provided the arguments are positive: log9x+12+9x=9x\log_9x + \frac{1}{2} + 9^x = 9^x Subtract 9x9^x from both sides: log9x+12=0\log_9x + \frac{1}{2} = 0 log9x=12\log_9x = -\frac{1}{2} Convert this logarithmic equation to an exponential equation using the definition logby=z    y=bz\log_b y = z \iff y = b^z: x=912x = 9^{-\frac{1}{2}} Calculate the value of xx: x=1912=19=13x = \frac{1}{9^{\frac{1}{2}}} = \frac{1}{\sqrt{9}} = \frac{1}{3} Verify the solution by checking the domain conditions:

  1. For log9x\log_9x to be defined, x>0x > 0. Our solution x=13x = \frac{1}{3} satisfies this (13>0\frac{1}{3} > 0).
  2. For the outer logarithm log3()\log_3(\dots) to be defined, its argument must be positive: log9x+12+9x>0\log_9x + \frac{1}{2} + 9^x > 0. Substitute x=13x = \frac{1}{3}: log9(13)+12+913\log_9\left(\frac{1}{3}\right) + \frac{1}{2} + 9^{\frac{1}{3}} We know that log9(13)=log32(31)=12log33=12\log_9\left(\frac{1}{3}\right) = \log_{3^2}(3^{-1}) = \frac{-1}{2}\log_3 3 = -\frac{1}{2}. So, the expression becomes: 12+12+913=0+93=93-\frac{1}{2} + \frac{1}{2} + 9^{\frac{1}{3}} = 0 + \sqrt[3]{9} = \sqrt[3]{9} Since 93>0\sqrt[3]{9} > 0, the argument is positive, and the solution x=13x = \frac{1}{3} is valid. Check the original equation with x=13x = \frac{1}{3}: Left Hand Side (LHS): log3(log9(13)+12+913)=log3(12+12+93)=log3(93)=log3(913)=13log39=13×2=23\log_3\left(\log_9\left(\frac{1}{3}\right) + \frac{1}{2} + 9^{\frac{1}{3}}\right) = \log_3\left(-\frac{1}{2} + \frac{1}{2} + \sqrt[3]{9}\right) = \log_3(\sqrt[3]{9}) = \log_3(9^{\frac{1}{3}}) = \frac{1}{3}\log_3 9 = \frac{1}{3} \times 2 = \frac{2}{3} Right Hand Side (RHS): 2x=2×13=232x = 2 \times \frac{1}{3} = \frac{2}{3} Since LHS = RHS, the solution x=13x = \frac{1}{3} is correct.