Solveeit Logo

Question

Physics Question on mechanical properties of fluid

A liquid is kept in a cylindrical vessel which is being rotated about a vertical axis through the centre of the circular base. If the radius of the vessel is rr and angular velocity of rotation is ω\omega, then the difference in the heights of the liquid at the centre of the vessel and the edge is

A

rω2g\frac{r\omega}{2g}

B

r2ω22g\frac{r^{2}\omega^{2}}{2g}

C

2grω\sqrt{2gr\omega}

D

ω22gr2\frac{\omega^{2}}{2gr^{2}}

Answer

r2ω22g\frac{r^{2}\omega^{2}}{2g}

Explanation

Solution

From Bernoulli?s theorem, PA+12dvA2+dghAP_{A}+\frac{1}{2}dv^{2}_{A}+dgh_{A} =PB+12dvB2+dghB=P_{_B}+\frac{1}{2}dv^{2}_{B}+dgh_{B} Here, hA=hBh_{A}=h_{B} PA+12dvA2=PB+12dvB2\therefore P_{A}+\frac{1}{2}dv^{2}_{A}=P_{B}+\frac{1}{2}dv^{2}_{B} PAPB=12d[vB2vA2]P_{A}-P_{B}=\frac{1}{2}d\left[v_{B}^{2}-v^{2}_{A}\right] Now, vA=0,vB=rωv_{A}=0, v_{B}=r\omega and PAPB=hdgP_{A}-P_{B}=hdg hdg=12dr2ω2\therefore hdg=\frac{1}{2}dr^{2} \omega^{2} or h=r2ω22gh=\frac{r^{2}\omega^{2}}{2g}