Solveeit Logo

Question

Physics Question on Surface tension

A liquid column of height 0.04cm0.04 \, \text{cm} balances excess pressure of a soap bubble of certain radius. If density of liquid is 8×103kg m38 \times 10^3 \, \text{kg m}^{-3} and surface tension of soap solution is 0.28N m10.28 \, \text{N m}^{-1}, then diameter of the soap bubble is _________ cm\text{cm}.
(if g=10m s2)(\text{if } g = 10 \, \text{m s}^{-2})

Answer

The excess pressure for a soap bubble is given by:
p=4SR.p = \frac{4S}{R}.
Using hydrostatic pressure:
p=ρgh.p = \rho g h.
Equating the two:
4SR=ρgh    R=4Sρgh.\frac{4S}{R} = \rho g h \implies R = \frac{4S}{\rho g h}.
Substitute values:
R=4×0.288×103×10×4×104.R = \frac{4 \times 0.28}{8 \times 10^3 \times 10 \times 4 \times 10^{-4}}.
R=0.288×102=3.5cm.R = \frac{0.28}{8 \times 10^{-2}} = 3.5 \, \text{cm}.
The diameter is:
Diameter=2R=7cm.\text{Diameter} = 2R = 7 \, \text{cm}.
Final Answer: 7cm7 \, \text{cm}.

Explanation

Solution

The excess pressure for a soap bubble is given by:
p=4SR.p = \frac{4S}{R}.
Using hydrostatic pressure:
p=ρgh.p = \rho g h.
Equating the two:
4SR=ρgh    R=4Sρgh.\frac{4S}{R} = \rho g h \implies R = \frac{4S}{\rho g h}.
Substitute values:
R=4×0.288×103×10×4×104.R = \frac{4 \times 0.28}{8 \times 10^3 \times 10 \times 4 \times 10^{-4}}.
R=0.288×102=3.5cm.R = \frac{0.28}{8 \times 10^{-2}} = 3.5 \, \text{cm}.
The diameter is:
Diameter=2R=7cm.\text{Diameter} = 2R = 7 \, \text{cm}.
Final Answer: 7cm7 \, \text{cm}.