Solveeit Logo

Question

Physics Question on Wave optics

A linearly polarized light beam travels from origin to point A (1,0,0). At the point A, the light is reflected by a mirror towards point B (1, -1,0). A second mirror located at point B then reflects the light towards point C (1,-1,1). Let n(x, y, z) represent the direction of polarization of light at (x, y, z).

A

If n^\hat{n}(0, 0, 0) = y^\hat{y}, then n^\hat{n}(1, -1, 1) = x^\hat{x}

B

If n^\hat{n}(0, 0, 0) = z^\hat{z}, then n^\hat{n}(1, -1, 1) = y^\hat{y}

C

If n^\hat{n}(0, 0, 0) = y^\hat{y}, then n^\hat{n}(1, -1, 1) = y^\hat{y}

D

If n^\hat{n}(0, 0, 0) = z^\hat{z}, then n^\hat{n}(1, -1, 1) = x^\hat{x}

Answer

If n^\hat{n}(0, 0, 0) = y^\hat{y}, then n^\hat{n}(1, -1, 1) = x^\hat{x}

Explanation

Solution

The correct option is (A): If n^\hat{n}(0, 0, 0) = y^\hat{y}, then n^\hat{n}(1, -1, 1) = x^\hat{x} and (B): If n^\hat{n}(0, 0, 0) = z^\hat{z}, then n^\hat{n}(1, -1, 1) = y^\hat{y}