Solveeit Logo

Question

Question: A linearly polarized electromagnetic wave given as \(\overleftarrow{E} = E_{0\backslash}\widehat{i}\...

A linearly polarized electromagnetic wave given as E=E0\i^cos(kzωt)is\overleftarrow{E} = E_{0\backslash}\widehat{i}\cos(kz - \omega t)isincident normally on a perfectly reflecting infinite well at z=a. Assuming that the material of the wall is optically inactive, the reflected wave will be given as

A

Er=E0i^cos(kzωt){\overrightarrow{E}}_{r} = - E_{0}\widehat{i}\cos(kz - \omega t)

B

Er=E0i^cos(kz+ωt){\overrightarrow{E}}_{r} = - E_{0}\widehat{i}\cos(kz + \omega t)

C

Er=E0i^cos(kz+ωt){\overrightarrow{E}}_{r} = E_{0}\widehat{i}\cos(kz + \omega t)

D

Elr=E0i^sin(kzωt)\overrightarrow{E}l_{r} = - E_{0}\widehat{i}\sin(kz - \omega t)

Answer

Er=E0i^cos(kz+ωt){\overrightarrow{E}}_{r} = - E_{0}\widehat{i}\cos(kz + \omega t)

Explanation

Solution

: As the wall is perfectly reflecting, there is no change in amplitude E0E_{0}

Also the wall is optically inactive, so, there is no phase change,

After reflection, the wave travels along –ve z direction,

Er=E0i^cos(kzωt)\therefore{\overrightarrow{E}}_{r} = E_{0}\widehat{i}\cos( - kz - \omega t)

=E0i^cos(kz+ωt)(cos(θ)=cosθ)= E_{0}\widehat{i}\cos(kz + \omega t)(\because\cos( - \theta) = \cos\theta)