Solveeit Logo

Question

Question: A line with direction cosines proportional to 2, 1, 2 meets each of the lines \(x = y + a = z\) and...

A line with direction cosines proportional to 2, 1, 2 meets each of the lines x=y+a=zx = y + a = z and x+a=2y=2zx + a = 2 y = 2 z. The co-ordinates of each of the points of intersection are given by

A

(2a, 3a, 3a) (2a, a, a)

B

(3a, 2a, 3a) (a, a, a)

C

(3a, 2a, 3a) (a, a, 2a)

D

(3a, 3a, 3a) (a, a, a)

Answer

(3a, 2a, 3a) (a, a, a)

Explanation

Solution

Given lines are x1=y+a1=z1=λ\frac { x } { 1 } = \frac { y + a } { 1 } = \frac { z } { 1 } = \lambda(say)

∴ Point is P(λ,λ – a, λ)

and x+a1=y1/2=z1/2\frac { x + a } { 1 } = \frac { y } { 1 / 2 } = \frac { z } { 1 / 2 }i.e. x+a2=y1=z1=μ\frac { x + a } { 2 } = \frac { y } { 1 } = \frac { z } { 1 } = \mu (say)

∴ Point Q(2μ – a, μ, μ)

Since d.r.’s of given lines are 2, 1, 2 and

d.r.’s of PQ = (2μ – a – λ, μ – λ + a, μ – λ)

According to question, 2μaλ2=μλ+a1=μλ2\frac { 2 \mu - a - \lambda } { 2 } = \frac { \mu - \lambda + a } { 1 } = \frac { \mu - \lambda } { 2 }

Then λ=3a\lambda = 3 a, μ = a.

Therefore, points of intersection are P(3a, 2a, 3a) and

Q(a, a, a).

Alternative method : Check by option x=y+a=zx = y + a = z

i.e. 3a=2a+a=3a3 a = 2 a + a = 3 a

⇒ a = a = a and x+a=2y=2zx + a = 2 y = 2 z i.e. a+a=2a=2aa + a = 2 a = 2 a

⇒ a = a = a.

Hence (2) is correct