Solveeit Logo

Question

Question: A line segment has endpoints at \[\left( {5,5} \right)\] and \[\left( {3,7} \right)\]. The line segm...

A line segment has endpoints at (5,5)\left( {5,5} \right) and (3,7)\left( {3,7} \right). The line segment is dilated by a factor of 12\dfrac{1}{2} around (3,1)\left( {3,1} \right) .What are the new endpoints and length of the line segment?

Explanation

Solution

In order to solve this question, we will use the concept that if a point QQ of coordinate (a,b)\left( {a,b} \right) is dilated by a factor nn around the point of coordinate (h,k)\left( {h,k} \right) , then after dilation the new position of point will be Q1=(n(ah)+h, n(bk)+k){Q^1} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right) .Firstly we will let AA and BB be the two endpoints of the line segment. After that we will let A1{A^1} and B1{B^1} be the new endpoints of the line segment after dilation and find them by substituting the values in the above formula. And finally, we will find the length of the dilated line segment using distance formula i.e., d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .And hence we will get the required result.

Complete step by step answer:
Let AA and BB be the two endpoints of the line segment which means A(5,5)A\left( {5,5} \right) and B(3,7)B\left( {3,7} \right) be the two endpoints of the line segment. And let A1{A^1} and B1{B^1} be the two new endpoints of the line segment.Now we know that if a point QQ of coordinate (a,b)\left( {a,b} \right) is dilated by a factor nn around the point of coordinate (h,k)\left( {h,k} \right) then after dilation the new position of point will be
Q1=(n(ah)+h, n(bk)+k){Q^1} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right)

This means
Q(a,b)=dilated nX around (h,k)Q1(n(ah)+h,n(bk)+k)Q\left( {a,b} \right) = \xrightarrow{{dilated{\text{ }}nX{\text{ }}around{\text{ }}\left( {h,k} \right)}}{Q^1}\left( {n\left( {a - h} \right) + h,n\left( {b - k} \right) + k} \right)
Now it is given that line segment is dilated by a factor of 12\dfrac{1}{2} around (3,1)\left( {3,1} \right) which means
n=12n = \dfrac{1}{2} and (h,k)=(3,1)\left( {h,k} \right) = \left( {3,1} \right)

Using the formula, we get
A(5,5)=dilated 12X around (3,1)A1(12(53)+3, 12(51)+1)A\left( {5,5} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {3,1} \right)}}{A^1}\left( {\dfrac{1}{2}\left( {5 - 3} \right) + 3,{\text{ }}\dfrac{1}{2}\left( {5 - 1} \right) + 1} \right)
On simplification, we get
A(5,5)=dilated 12X around (3,1)A1(4,3)A\left( {5,5} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {3,1} \right)}}{A^1}\left( {4,3} \right)
which means the first new endpoint is A1(4,3){A^1}\left( {4,3} \right)
Similarly,
B(3,7)=dilated 12X around (3,1)B1(12(33)+3, 12(71)+1)B\left( {3,7} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {3,1} \right)}}{B^1}\left( {\dfrac{1}{2}\left( {3 - 3} \right) + 3,{\text{ }}\dfrac{1}{2}\left( {7 - 1} \right) + 1} \right)

On simplification, we get
B(3,7)=dilated 12X around (3,1)B1(3,4)B\left( {3,7} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {3,1} \right)}}{B^1}\left( {3,4} \right)
which means the second new endpoint is B1(3,4){B^1}\left( {3,4} \right)
Therefore, the new endpoints are A1(4,3){A^1}\left( {4,3} \right) and B1(3,4){B^1}\left( {3,4} \right)
Now we know that distance formula,
d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Therefore, the length of the dilated line segment will be
A1B1=(34)2+(43)2{A^1}{B^1} = \sqrt {{{\left( {3 - 4} \right)}^2} + {{\left( {4 - 3} \right)}^2}}
A1B1=(1)2+(1)2\Rightarrow {A^1}{B^1} = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}}
A1B1=2\Rightarrow {A^1}{B^1} = \sqrt 2
We know that 2=1.4142\sqrt 2 = 1.4142
A1B1=1.4142\therefore {A^1}{B^1} = 1.4142

Hence, the new endpoints are A1(4,3){A^1}\left( {4,3} \right) and B1(3,4){B^1}\left( {3,4} \right)
and the length of line segment A1B1=1.4142{A^1}{B^1} = 1.4142.

Note: Alternative way to solve this problem is: If q0{q_0} is the dilation centre, q1{q_1} and q2{q_2} are the coordinates of the endpoints of the line segment and λ\lambda is the factor of dilation, then the position of new endpoints will be given by:
q11=q0+λ(q1q0)q_1^1= {q_0} + \lambda \left( {{q_1} - {q_0}} \right) and q21=q0+λ(q2q0)q_2^1= {q_0} + \lambda \left( {{q_2} - {q_0}} \right)
So, here q0=(3,1), q1=(5,5), q2=(3,7), λ=12{q_0} = \left( {3,1} \right),{\text{ }}{q_1} = \left( {5,5} \right),{\text{ }}{q_2} = \left( {3,7} \right),{\text{ }}\lambda = \dfrac{1}{2}
Therefore, we get
q11=(3,1)+12((5,5)(3,1))q_1^1= \left( {3,1} \right) + \dfrac{1}{2}\left( {\left( {5,5} \right) - \left( {3,1} \right)} \right)
q11=(3,1)+12(53,51)\Rightarrow q_1^1= \left( {3,1} \right) + \dfrac{1}{2}\left( {5 - 3,5 - 1} \right)
q11=(3,1)+(1,2)\Rightarrow q_1^1= \left( {3,1} \right) + \left( {1,2} \right)
q11=(4,3)\Rightarrow q_1^1= \left( {4,3} \right)
And
q21=(3,1)+12((3,7)(3,1))q_2^1= \left( {3,1} \right) + \dfrac{1}{2}\left( {\left( {3,7} \right) - \left( {3,1} \right)} \right)
q21=(3,1)+12(33, 71)\Rightarrow q_2^1= \left( {3,1} \right) + \dfrac{1}{2}\left( {3 - 3,{\text{ 7}} - 1} \right)
q21=(3,1)+(0, 3)=(3, 4)\Rightarrow q_2^1= \left( {3,1} \right) + \left( {0,{\text{ 3}}} \right) = \left( {3,{\text{ 4}}} \right)
Hence, the new endpoints are q11=(4,3)q_1^1= \left( {4,3} \right) and q21=(3,4)q_2^1= \left( {3,4} \right)
Now, the length of the dilated line segment will be
q11q21=(34)2+(43)2q_1^1q_2^1= \sqrt {{{\left( {3 - 4} \right)}^2} + {{\left( {4 - 3} \right)}^2}}
q11q21=2\Rightarrow q_1^1q_2^1= \sqrt 2
q11q21=1.4142\Rightarrow q_1^1q_2^1= 1.4142
Hence, the length of the line segment q11q21=1.4142q_1^1q_2^1= 1.4142.