Solveeit Logo

Question

Question: A line segment has endpoints at \[\left( {2,1} \right)\] and \[\left( {6,2} \right)\] . The line seg...

A line segment has endpoints at (2,1)\left( {2,1} \right) and (6,2)\left( {6,2} \right) . The line segment is dilated by a factor of 44 around (2,1)\left( {2,1} \right) .What are the new endpoints and length of the line segment?

Explanation

Solution

In order to solve this question, we will use the concept that if a point PP of coordinate (a,b)\left( {a,b} \right) is dilated by a factor nn around the point of coordinate (h,k)\left( {h,k} \right) , then after dilation the new position of point will be P=(n(ah)+h, n(bk)+k){P'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right) .Firstly we will let AA and BB be the two endpoints of the line segment. After that we will let A{A'} and B{B'} be the new endpoints of the line segment after dilation and find them by substituting the values in the above formula. And finally, we will find the length of the dilated line segment using distance formula i.e., d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .And hence we will get the required result.

Complete answer:
Let AA and BB be the two endpoints of the line segment.
which means A(2,1)A\left( {2,1} \right) and B(6,2)B\left( {6,2} \right) be the two endpoints of the line segment.
And let A{A'} and B{B'} be the two new endpoints of the line segment.
Now we know that
that if a point PP of coordinate (a,b)\left( {a,b} \right) is dilated by a factor nn around the point of coordinate (h,k)\left( {h,k} \right) then after dilation the new position of point will be
P=(n(ah)+h, n(bk)+k){P'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right)
This means
P(a,b)=dilated nX around (h,k)P(n(ah)+h,n(bk)+k)P\left( {a,b} \right) = \xrightarrow{{dilated{\text{ }}nX{\text{ }}around{\text{ }}\left( {h,k} \right)}}{P'}\left( {n\left( {a - h} \right) + h,n\left( {b - k} \right) + k} \right)
Now it is given that
line segment is dilated by a factor of 44 around (2,1)\left( {2,1} \right)
which means n=4n = 4 and (h,k)=(2,1)\left( {h,k} \right) = \left( {2,1} \right)
Using the formula, we get
A(2,1)=dilated 4X around (2,1)A(4(22)+2, 4(11)+1)A\left( {2,1} \right) = \xrightarrow{{dilated{\text{ 4}}X{\text{ }}around{\text{ }}\left( {2,1} \right)}}{A'}\left( {4\left( {2 - 2} \right) + 2,{\text{ }}4\left( {1 - 1} \right) + 1} \right)
On simplification, we get
A(2,1)=dilated 4X around (2,1)A(2,1)A\left( {2,1} \right) = \xrightarrow{{dilated{\text{ 4}}X{\text{ }}around{\text{ }}\left( {2,1} \right)}}{A'}\left( {2,1} \right)
which means the first new endpoint is A(2,1){A'}\left( {2,1} \right)
Similarly,
B(6,2)=dilated 4X around (2,1)B(4(62)+2, 4(21)+1)B\left( {6,2} \right) = \xrightarrow{{dilated{\text{ 4}}X{\text{ }}around{\text{ }}\left( {2,1} \right)}}{B'}\left( {4\left( {6 - 2} \right) + 2,{\text{ }}4\left( {2 - 1} \right) + 1} \right)
On simplification, we get
B(2,1)=dilated 4X around (2,1)B(18,5)B\left( {2,1} \right) = \xrightarrow{{dilated{\text{ 4}}X{\text{ }}around{\text{ }}\left( {2,1} \right)}}{B'}\left( {18,5} \right)
which means the second new endpoint is B(18,5){B'}\left( {18,5} \right)
Therefore, the new endpoints are A(2,1){A'}\left( {2,1} \right) and B(18,5){B'}\left( {18,5} \right)
Now we know that
Distance formula, d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Therefore, the length of the dilated line segment will be
AB=(182)2+(51)2{A'}{B'} = \sqrt {{{\left( {18 - 2} \right)}^2} + {{\left( {5 - 1} \right)}^2}}
AB=(16)2+(4)2\Rightarrow {A'}{B'} = \sqrt {{{\left( {16} \right)}^2} + {{\left( 4 \right)}^2}}
As 162=256{16^2} = 256 and 42=16{4^2} = 16
Therefore, we get
AB=256+16\Rightarrow {A'}{B'} = \sqrt {256 + 16}
AB=272\Rightarrow {A'}{B'} = \sqrt {272}
AB16.49\Rightarrow {A'}{B'} \approx 16.49
Hence, the new endpoints are A(2,1){A'}\left( {2,1} \right) and B(18,5){B'}\left( {18,5} \right)
and the length of line segment AB16.49{A'}{B'} \approx 16.49

Note: Alternative way to solve this problem is:
If p0{p_0} is the dilation centre, p1{p_1} and p2{p_2} are the coordinates of the endpoints of the line segment and λ\lambda is the factor of dilation, then the position of new endpoints will be given by:
p1=p0+λ(p1p0)p_1' = {p_0} + \lambda \left( {{p_1} - {p_0}} \right) and p2=p0+λ(p2p0)p_2' = {p_0} + \lambda \left( {{p_2} - {p_0}} \right)
So, here p0=(2,1), p1=(2,1), p2=(6,2), λ=4{p_0} = \left( {2,1} \right),{\text{ }}{p_1} = \left( {2,1} \right),{\text{ }}{p_2} = \left( {6,2} \right),{\text{ }}\lambda = 4
Therefore, we get
p1=(2,1)+4((2,1)(2,1))p_1' = \left( {2,1} \right) + 4\left( {\left( {2,1} \right) - \left( {2,1} \right)} \right)
p1=(2,1)+4(22,11)\Rightarrow p_1' = \left( {2,1} \right) + 4\left( {2 - 2,1 - 1} \right)
p1=(2,1)\Rightarrow p_1' = \left( {2,1} \right)
And
p2=(2,1)+4((6,2)(2,1))p_2' = \left( {2,1} \right) + 4\left( {\left( {6,2} \right) - \left( {2,1} \right)} \right)
p2=(2,1)+4(62, 21)\Rightarrow p_2' = \left( {2,1} \right) + 4\left( {6 - 2,{\text{ }}2 - 1} \right)
p2=(2,1)+(16, 4)=(18, 5)\Rightarrow p_2' = \left( {2,1} \right) + \left( {16,{\text{ 4}}} \right) = \left( {18,{\text{ }}5} \right)
Hence, the new endpoints are p1=(2,1)p_1' = \left( {2,1} \right) and p2=(18,5)p_2' = \left( {18,5} \right)
Now, the length of the dilated line segment will be
p1p2=(182)2+(51)2p_1'p_2' = \sqrt {{{\left( {18 - 2} \right)}^2} + {{\left( {5 - 1} \right)}^2}}
p1p2=(16)2+(4)2\Rightarrow p_1'p_2' = \sqrt {{{\left( {16} \right)}^2} + {{\left( 4 \right)}^2}}
p1p216.49\Rightarrow p_1'p_2' \approx 16.49
Hence, the length of the line segment p1p216.49p_1'p_2' \simeq 16.49
Hence, we get the required results.