Solveeit Logo

Question

Question: A line segment has endpoints at \[\left( {1,2} \right)\] and \[\left( {3,1} \right)\] . The line seg...

A line segment has endpoints at (1,2)\left( {1,2} \right) and (3,1)\left( {3,1} \right) . The line segment is dilated by a factor of 12\dfrac{1}{2} around (2,5)\left( {2,5} \right) .What are the new endpoints and length of the line segment?

Explanation

Solution

In order to solve this question, we will use the concept that if a point XX of coordinate (a,b)\left( {a,b} \right) is dilated by a factor nn around the point of coordinate (h,k)\left( {h,k} \right) , then after dilation the new position of point will be X=(n(ah)+h, n(bk)+k){X'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right) .Firstly we will let AA and BB be the two endpoints of the line segment. After that we will let A{A'} and B{B'} be the new endpoints of the line segment after dilation and find them by substituting the values in the above formula. And finally, we will find the length of the dilated line segment using distance formula i.e., d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .And hence we will get the required result.

Complete answer: :
Let AA and BB be the two endpoints of the line segment.
which means A(1,2)A\left( {1,2} \right) and B(3,1)B\left( {3,1} \right) be the two endpoints of the line segment.
And let A{A'} and B{B'} be the two new endpoints of the line segment.
Now we know that
If a point XX of coordinate (a,b)\left( {a,b} \right) is dilated by a factor nn around the point of coordinate, (h,k)\left( {h,k} \right) then after dilation the new position of point will be
X=(n(ah)+h, n(bk)+k){X'} = \left( {n\left( {a - h} \right) + h,{\text{ }}n\left( {b - k} \right) + k} \right)
This means
X(a,b)=dilated nX around (h,k)X(n(ah)+h,n(bk)+k)X\left( {a,b} \right) = \xrightarrow{{dilated{\text{ }}nX{\text{ }}around{\text{ }}\left( {h,k} \right)}}{X'}\left( {n\left( {a - h} \right) + h,n\left( {b - k} \right) + k} \right)
Now it is given that
line segment is dilated by a factor of 12\dfrac{1}{2} around (2,5)\left( {2,5} \right)
which means n=12n = \dfrac{1}{2} and (h,k)=(2,5)\left( {h,k} \right) = \left( {2,5} \right)
Using the formula, we get
A(1,2)=dilated 12X around (2,5)A(12(12)+2, 12(25)+5)A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{1}{2}\left( {1 - 2} \right) + 2,{\text{ }}\dfrac{1}{2}\left( {2 - 5} \right) + 5} \right)
A(1,2)=dilated 12X around (2,5)A(12+2, 32+5)\Rightarrow A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{{ - 1}}{2} + 2,{\text{ }}\dfrac{{ - 3}}{2} + 5} \right)
On simplification, we get
A(1,2)=dilated 12X around (2,5)A(32,72)A\left( {1,2} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)
which means the first new endpoint is A(32,72){A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right)
Similarly,
B(3,1)=dilated 12X around (2,5)B(12(32)+2, 12(15)+5)B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{1}{2}\left( {3 - 2} \right) + 2,{\text{ }}\dfrac{1}{2}\left( {1 - 5} \right) + 5} \right)
B(3,1)=dilated 12X around (2,5)B(12+2, 42+5)\Rightarrow B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{1}{2} + 2,{\text{ }}\dfrac{{ - 4}}{2} + 5} \right)
On simplification, we get
B(3,1)=dilated 12X around (2,5)B(52,3)B\left( {3,1} \right) = \xrightarrow{{dilated{\text{ }}\dfrac{1}{2}X{\text{ }}around{\text{ }}\left( {2,5} \right)}}{B'}\left( {\dfrac{5}{2},3} \right)
which means the second new endpoint is B(52,3){B'}\left( {\dfrac{5}{2},3} \right)
Therefore, the new endpoints are A(32,72){A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right) and B(52,3){B'}\left( {\dfrac{5}{2},3} \right)
Now we know that
Distance formula, d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Therefore, the length of the dilated line segment will be
AB=(5232)2+(372)2{A'}{B'} = \sqrt {{{\left( {\dfrac{5}{2} - \dfrac{3}{2}} \right)}^2} + {{\left( {3 - \dfrac{7}{2}} \right)}^2}}
AB=(1)2+(12)2\Rightarrow {A'}{B'} = \sqrt {{{\left( 1 \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}}
AB=54\Rightarrow {A'}{B'} = \sqrt {\dfrac{5}{4}}
We know that ab=ab\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}

Therefore, we have
AB=54=52\Rightarrow {A'}{B'} = \sqrt {\dfrac{5}{4}} = \dfrac{{\sqrt 5 }}{2}
We know that 5=2.236\sqrt 5 = 2.236
AB=2.2362=1.118\Rightarrow {A'}{B'} = \dfrac{{2.236}}{2} = 1.118
Hence, the new endpoints are A(32,72){A'}\left( {\dfrac{3}{2},\dfrac{7}{2}} \right) and B(52,3){B'}\left( {\dfrac{5}{2},3} \right)
and the length of line segment AB=1.118{A'}{B'} = 1.118

Note:
Alternative way to solve this problem is:
If x0{x_0} is the dilation centre, x1{x_1} and x2{x_2} are the coordinates of the endpoints of the line segment and λ\lambda is the factor of dilation, then the position of new endpoints will be given by:
x1=x0+λ(x1x0)x_1' = {x_0} + \lambda \left( {{x_1} - {x_0}} \right) and x2=x0+λ(x2x0)x_2' = {x_0} + \lambda \left( {{x_2} - {x_0}} \right)
So, here x0=(2,5), x1=(1,2), x2=(3,1), λ=12{x_0} = \left( {2,5} \right),{\text{ }}{x_1} = \left( {1,2} \right),{\text{ }}{x_2} = \left( {3,1} \right),{\text{ }}\lambda = \dfrac{1}{2}
Therefore, we get
x1=(2,5)+12((1,2)(2,5))x_1' = \left( {2,5} \right) + \dfrac{1}{2}\left( {\left( {1,2} \right) - \left( {2,5} \right)} \right)
x1=(2,5)+12(12,25)\Rightarrow x_1' = \left( {2,5} \right) + \dfrac{1}{2}\left( {1 - 2,2 - 5} \right)
x1=(2,5)+(12,32)\Rightarrow x_1' = \left( {2,5} \right) + \left( {\dfrac{{ - 1}}{2},\dfrac{{ - 3}}{2}} \right)
x1=(32,72)\Rightarrow x_1' = \left( {\dfrac{3}{2},\dfrac{7}{2}} \right)
And
x2=(2,5)+12((3,1)(2,5))x_2' = \left( {2,5} \right) + \dfrac{1}{2}\left( {\left( {3,1} \right) - \left( {2,5} \right)} \right)
x2=(2,5)+12(32, 15)\Rightarrow x_2' = \left( {2,5} \right) + \dfrac{1}{2}\left( {3 - 2,{\text{ 1}} - 5} \right)
x2=(2,5)+(12,2)=(52, 3)\Rightarrow x_2' = \left( {2,5} \right) + \left( {\dfrac{1}{2}, - 2} \right) = \left( {\dfrac{5}{2},{\text{ }}3} \right)
Hence, the new endpoints are x1=(32,72)x_1' = \left( {\dfrac{3}{2},\dfrac{7}{2}} \right) and x2=(52,3)x_2' = \left( {\dfrac{5}{2},3} \right)
Now, the length of the dilated line segment will be
x1x2=(5232)2+(372)2x_1'x_2' = \sqrt {{{\left( {\dfrac{5}{2} - \dfrac{3}{2}} \right)}^2} + {{\left( {3 - \dfrac{7}{2}} \right)}^2}}
x1x2=52=2.2362\Rightarrow x_1'x_2' = \dfrac{{\sqrt 5 }}{2} = \dfrac{{2.236}}{2}
x1x2=1.118\Rightarrow x_1'x_2' = 1.118
Hence, the length of the line segment x1x2=1.118x_1'x_2' = 1.118
Hence, we get the required results.