Solveeit Logo

Question

Question: A line passing through origin and is perpendicular to two given lines \(2 x + y + 6 = 0\) and \(4 x ...

A line passing through origin and is perpendicular to two given lines 2x+y+6=02 x + y + 6 = 0 and 4x+2y9=04 x + 2 y - 9 = 0, then the ratio in which the origin divides this line is.

A

1 : 2

B

2 : 1

C

4 : 3

D

3 : 4

Answer

4 : 3

Explanation

Solution

Equation of line Perpendicular to 2x+y+6=02 x + y + 6 = 0 passes through (0, 0) is x2y=0x - 2 y = 0

Now point of intersection of x2y=0x - 2 y = 0 and 2x+y+6=02 x + y + 6 = 0is (125,65)\left( \frac { - 12 } { 5 } , \frac { - 6 } { 5 } \right) and point of intersection of x2y=0x - 2 y = 0 and 4x+2y9=04 x + 2 y - 9 = 0 is (95,910)\left( \frac { 9 } { 5 } , \frac { 9 } { 10 } \right).

Now say origin divide the line x2y=0x - 2 y = 0 in the ratio λ:1\lambda : 1

x=95λ125λ+1=095λ=125x = \frac { \frac { 9 } { 5 } \lambda - \frac { 12 } { 5 } } { \lambda + 1 } = 0 \Rightarrow \frac { 9 } { 5 } \lambda = \frac { 12 } { 5 }, λ=43\therefore \lambda = \frac { 4 } { 3 }

Thus origin divides the line x=2yx = 2 y, in the ratio 4 : 3.