Solveeit Logo

Question

Question: A line passing through A(1, 2, 3) and having direction ratios (3, 4, 5) meets a plane x + 2y – 3z = ...

A line passing through A(1, 2, 3) and having direction ratios (3, 4, 5) meets a plane x + 2y – 3z = 5 at B, then distance AB is equal to-

A

94\frac { 9 } { 4 }

B

114\frac { 11 } { 4 }

C

134\frac { 13 } { 4 }

D

None of these

Answer

None of these

Explanation

Solution

Equation of the line is = y24\frac { y - 2 } { 4 }=

i.e., = = = r (say)

\ 1 + 3r52\frac { 3 r } { 5 \sqrt { 2 } } + 4 + – 9 – = 5

̃ – = 9 ̃ r = 4524\frac { 45 \sqrt { 2 } } { 4 }.

̃ A(1, 2, 3) and B (314,11,574)\left( \frac { 31 } { 4 } , 11 , \frac { 57 } { 4 } \right)

\ |AB| = (3141)2+(112)2+(5743)2\sqrt { \left( \frac { 31 } { 4 } - 1 \right) ^ { 2 } + ( 11 - 2 ) ^ { 2 } + \left( \frac { 57 } { 4 } - 3 \right) ^ { 2 } }