Solveeit Logo

Question

Question: A line passes through the points whose position vectors are $\hat{i} + \hat{j} - 2\hat{k}$ and $\hat...

A line passes through the points whose position vectors are i^+j^2k^\hat{i} + \hat{j} - 2\hat{k} and i^3j^+k^\hat{i} - 3\hat{j} + \hat{k}. The position vector of a point on it at unit distance from the first point is

A

i^+15j^75k^\hat{i} + \frac{1}{5}\hat{j} - \frac{7}{5}\hat{k}

B

i^+95j^135k^\hat{i} + \frac{9}{5}\hat{j} - \frac{13}{5}\hat{k}

C

i^+j^2k^\hat{i} + \hat{j} - 2\hat{k}

D

i^3j^+k^\hat{i} - 3\hat{j} + \hat{k}

Answer

i^+15j^75k^\hat{i} + \frac{1}{5}\hat{j} - \frac{7}{5}\hat{k} or i^+95j^135k^\hat{i} + \frac{9}{5}\hat{j} - \frac{13}{5}\hat{k}

Explanation

Solution

Let the position vectors be a=i^+j^2k^\vec{a} = \hat{i} + \hat{j} - 2\hat{k} and b=i^3j^+k^\vec{b} = \hat{i} - 3\hat{j} + \hat{k}. The direction vector is d=ba=4j^+3k^\vec{d} = \vec{b} - \vec{a} = -4\hat{j} + 3\hat{k}. The unit direction vector is d^=4j^+3k^5\hat{d} = \frac{-4\hat{j} + 3\hat{k}}{5}. The position vector of a point at unit distance from a\vec{a} is r=a±1d^\vec{r} = \vec{a} \pm 1 \cdot \hat{d}. So, r1=(i^+j^2k^)+4j^+3k^5=i^+15j^75k^\vec{r}_1 = (\hat{i} + \hat{j} - 2\hat{k}) + \frac{-4\hat{j} + 3\hat{k}}{5} = \hat{i} + \frac{1}{5}\hat{j} - \frac{7}{5}\hat{k}. And, r2=(i^+j^2k^)4j^+3k^5=i^+95j^135k^\vec{r}_2 = (\hat{i} + \hat{j} - 2\hat{k}) - \frac{-4\hat{j} + 3\hat{k}}{5} = \hat{i} + \frac{9}{5}\hat{j} - \frac{13}{5}\hat{k}.