Solveeit Logo

Question

Question: A line OP through origin O is inclined at 30º and 45º to OX and OY respectively. The angle at which ...

A line OP through origin O is inclined at 30º and 45º to OX and OY respectively. The angle at which it is inclined to OZ is

A

cos–146\sqrt { \frac { 4 } { 6 } }

B

cos–1(26)\left( \frac { 2 } { 6 } \right)

C

cos–1 (12)\left( \frac { 1 } { 2 } \right)

D

Not defined

Answer

Not defined

Explanation

Solution

Let l, m, n be the direction cosines of the given vector, then l2 + m2 + n2 =1.

If l = cos 30º=32\frac { \sqrt { 3 } } { 2 }, m = cos 45º =12\frac { 1 } { \sqrt { 2 } }, then 34\frac { 3 } { 4 }+12\frac { 1 } { 2 }+ n2 =1,

̃ n2 = –14\frac { 1 } { 4 }

which is not possible. So, such a line cannot exist.