Solveeit Logo

Question

Question: A line makes angles α, β, γ, δ with the four diagonals of a cube. Then cos<sup>2</sup>α + cos<sup>2<...

A line makes angles α, β, γ, δ with the four diagonals of a cube. Then cos2α + cos2β + cos2γ + cos2δ is equal to

A

1

B

4/3

C

¾

D

4/5

Answer

4/3

Explanation

Solution

The direction ratios of the diagonal OR\overrightarrow { \mathrm { OR } } are (1, 1, 1).

⇒ direction cosine are (13,13,13)\left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right).

Similarly direction cosine of AS\overrightarrow { \mathrm { AS } } are

and those of BP\overrightarrow { \mathrm { BP } } and CQ\overrightarrow { \mathrm { CQ } } are

(13,13,13)\left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } \right) (13,13,13)\left( \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right) .

Let l, m, n be direction cosines of the line so that

cosα = , cosβ = mn3\frac { \ell - m - n } { \sqrt { 3 } }, cosγ = ,

cosδ = m+n3\frac { \ell - m + n } { \sqrt { 3 } }

⇒ cos2α + cos2β + cos2γ + cos2δ ==43\frac { 4 } { 3 } (since l2 + m2 + n2 = 1)