Solveeit Logo

Question

Question: A line $L: y = mx + 9$ meets $y$-axis at point $A$ and intersect $y^2 = 12x$ at the point $B(x_0, y_...

A line L:y=mx+9L: y = mx + 9 meets yy-axis at point AA and intersect y2=12xy^2 = 12x at the point B(x0,y0)B(x_0, y_0), where 0<y0<150 < y_0 < 15.

The tangent to the parabola at point BB intersects the yy-axis at C(0,y1)C(0, y_1). The slope mm of the line LL is chosen such that the area of the triangle ABCABC is maximum.

Match each entry in List-I with correct entries in List-II.

List-IList-II
(P)y0+x0y_0 + x_0 is equal to(1)24
(Q)mm is equal to(2)14\frac{1}{4}
(R)Slope of tangent is equal to(3)12\frac{1}{2}
(S)Maximum area of ABC\triangle ABC (in sq. units) is(4)18
(5)6
Answer

P-1, Q-2, R-3, S-4

Explanation

Solution

The line L:y=mx+9L: y = mx + 9 meets the yy-axis at point AA. Setting x=0x=0, we get y=9y = 9. So, A=(0,9)A = (0, 9).

The line LL intersects the parabola y2=12xy^2 = 12x at point B(x0,y0)B(x_0, y_0).

Since BB is on the line, y0=mx0+9y_0 = mx_0 + 9.

Since BB is on the parabola, y02=12x0y_0^2 = 12x_0.

From the parabola equation, x0=y0212x_0 = \frac{y_0^2}{12}. Substitute this into the line equation:

y0=m(y0212)+9y_0 = m \left(\frac{y_0^2}{12}\right) + 9

12y0=my02+10812y_0 = my_0^2 + 108

my0212y0+108=0my_0^2 - 12y_0 + 108 = 0.

The tangent to the parabola y2=12xy^2 = 12x at B(x0,y0)B(x_0, y_0) is given by yy0=6(x+x0)yy_0 = 6(x+x_0).

This tangent intersects the yy-axis at C(0,y1)C(0, y_1). Setting x=0x=0, we get y1y0=6x0y_1 y_0 = 6x_0.

y1=6x0y0y_1 = \frac{6x_0}{y_0}. Substitute x0=y0212x_0 = \frac{y_0^2}{12}:

y1=6(y02/12)y0=y02/2y0=y02y_1 = \frac{6(y_0^2/12)}{y_0} = \frac{y_0^2/2}{y_0} = \frac{y_0}{2}.

So, C=(0,y0/2)C = (0, y_0/2).

The vertices of ABC\triangle ABC are A(0,9)A(0, 9), B(x0,y0)B(x_0, y_0), and C(0,y0/2)C(0, y_0/2).

The base ACAC lies on the yy-axis. The length of the base ACAC is 9y0/2|9 - y_0/2|.

The height of the triangle with respect to base ACAC is the absolute value of the xx-coordinate of BB, which is x0|x_0|. Since y0(0,15)y_0 \in (0, 15), y02=12x0>0y_0^2 = 12x_0 > 0, so x0>0x_0 > 0. The height is x0x_0.

Area of ABC=12×AC×x0=129y0/2x0\triangle ABC = \frac{1}{2} \times AC \times x_0 = \frac{1}{2} |9 - y_0/2| x_0.

Given 0<y0<150 < y_0 < 15, y0/2<15/2=7.5y_0/2 < 15/2 = 7.5. So 9y0/2>97.5=1.5>09 - y_0/2 > 9 - 7.5 = 1.5 > 0.

Area S=12(9y0/2)x0S = \frac{1}{2} (9 - y_0/2) x_0.

Substitute x0=y0212x_0 = \frac{y_0^2}{12}:

S(y0)=12(9y0/2)y0212=y0224(9y0/2)=9y0224y0348=3y028y0348S(y_0) = \frac{1}{2} (9 - y_0/2) \frac{y_0^2}{12} = \frac{y_0^2}{24} (9 - y_0/2) = \frac{9y_0^2}{24} - \frac{y_0^3}{48} = \frac{3y_0^2}{8} - \frac{y_0^3}{48}.

To maximize the area, we find the derivative with respect to y0y_0 and set it to zero:

S(y0)=ddy0(3y028y0348)=6y083y0248=3y04y0216S'(y_0) = \frac{d}{dy_0} \left(\frac{3y_0^2}{8} - \frac{y_0^3}{48}\right) = \frac{6y_0}{8} - \frac{3y_0^2}{48} = \frac{3y_0}{4} - \frac{y_0^2}{16}.

S(y0)=03y04y0216=0y0(34y016)=0S'(y_0) = 0 \Rightarrow \frac{3y_0}{4} - \frac{y_0^2}{16} = 0 \Rightarrow y_0 \left(\frac{3}{4} - \frac{y_0}{16}\right) = 0.

Since y0>0y_0 > 0, we must have 34y016=0y016=34y0=34×16=12\frac{3}{4} - \frac{y_0}{16} = 0 \Rightarrow \frac{y_0}{16} = \frac{3}{4} \Rightarrow y_0 = \frac{3}{4} \times 16 = 12.

This value y0=12y_0 = 12 is in the range (0,15)(0, 15).

The second derivative is S(y0)=342y016=34y08S''(y_0) = \frac{3}{4} - \frac{2y_0}{16} = \frac{3}{4} - \frac{y_0}{8}. At y0=12y_0=12, S(12)=34128=3432=34<0S''(12) = \frac{3}{4} - \frac{12}{8} = \frac{3}{4} - \frac{3}{2} = -\frac{3}{4} < 0, confirming a maximum.

The maximum area occurs when y0=12y_0 = 12.

Now we calculate the values for List-I using y0=12y_0 = 12.

x0=y0212=12212=12x_0 = \frac{y_0^2}{12} = \frac{12^2}{12} = 12. So B=(12,12)B = (12, 12).

(P) y0+x0=12+12=24y_0 + x_0 = 12 + 12 = 24. This matches List-II (1).

(Q) The point B(12,12)B(12, 12) lies on the line y=mx+9y = mx + 9.

12=m(12)+93=12mm=312=1412 = m(12) + 9 \Rightarrow 3 = 12m \Rightarrow m = \frac{3}{12} = \frac{1}{4}. This matches List-II (2).

(R) The slope of the tangent to y2=12xy^2 = 12x at (x0,y0)(x_0, y_0) is 6y0\frac{6}{y_0}.

At B(12,12)B(12, 12), the slope of the tangent is 612=12\frac{6}{12} = \frac{1}{2}. This matches List-II (3).

(S) Maximum area of ABC\triangle ABC is S(12)S(12).

S(12)=3(12)28(12)348=3×1448172848=3×1836=5436=18S(12) = \frac{3(12)^2}{8} - \frac{(12)^3}{48} = \frac{3 \times 144}{8} - \frac{1728}{48} = 3 \times 18 - 36 = 54 - 36 = 18.

This matches List-II (4).

The final matching is:

(P) - (1) (Q) - (2) (R) - (3) (S) - (4)