Solveeit Logo

Question

Question: A line L is perpendicular to the line \(5 x - y = 1\)and the area of the triangle formed by the line...

A line L is perpendicular to the line 5xy=15 x - y = 1and the area of the triangle formed by the line L and coordinate axes is 5. The equation of the line L is.

A

x+5y=5x + 5 y = 5

B

x+5y=±52x + 5 y = \pm 5 \sqrt { 2 }

C

x5y=5x - 5 y = 5

D

x5y=52x - 5 y = 5 \sqrt { 2 }

Answer

x+5y=±52x + 5 y = \pm 5 \sqrt { 2 }

Explanation

Solution

A line perpendicular to the line 5xy=15 x - y = 1is given by x+5yλ=0=Lx + 5 y - \lambda = 0 = L , (given)

In intercept form xλ+yλ/5=1\frac { x } { \lambda } + \frac { y } { \lambda / 5 } = 1

So, area of triangle is 12\frac { 1 } { 2 } xx (Multiplication of intercepts)

12(λ)×(λ5)=5λ=±52\frac { 1 } { 2 } ( \lambda ) \times \left( \frac { \lambda } { 5 } \right) = 5 \Rightarrow \lambda = \pm 5 \sqrt { 2 }

Hence the equation of required straight line is

x+5y=±52x + 5 y = \pm 5 \sqrt { 2 } .