Solveeit Logo

Question

Question: A line is drawn through a fixed point \(P ( \alpha , \beta )\) to cut the circle \(x ^ { 2 } + y ^...

A line is drawn through a fixed point P(α,β)P ( \alpha , \beta ) to cut the circle x2+y2=r2x ^ { 2 } + y ^ { 2 } = r ^ { 2 } at A and B. Then PA.PBP A . P B is equal to.

A

(α+β)2r2( \alpha + \beta ) ^ { 2 } - r ^ { 2 }

B

α2+β2r2\alpha ^ { 2 } + \beta ^ { 2 } - r ^ { 2 }

C

(αβ)2+r2( \alpha - \beta ) ^ { 2 } + r ^ { 2 }

D

None of these

Answer

α2+β2r2\alpha ^ { 2 } + \beta ^ { 2 } - r ^ { 2 }

Explanation

Solution

Let the equation of line through the point (α,β)( \alpha , \beta ) be xαcosθ=yβsinθ=k\frac { x - \alpha } { \cos \theta } = \frac { y - \beta } { \sin \theta } = k (say) ….(i)

where k is the distance of any point (x, y) on the line from the point P(α,β)P ( \alpha , \beta ) . Let this line meets the circle x2+y2=r2x ^ { 2 } + y ^ { 2 } = r ^ { 2 } at (α+kcosθ,β+ksinθ)( \alpha + k \cos \theta , \beta + k \sin \theta ) .

\therefore (α+kcosθ)2+(β+ksinθ)2=r2( \alpha + k \cos \theta ) ^ { 2 } + ( \beta + k \sin \theta ) ^ { 2 } = r ^ { 2 }

or k2+2(αcosθ+βsinθ)k+(α2+β2r2)=0k ^ { 2 } + 2 ( \alpha \cos \theta + \beta \sin \theta ) k + \left( \alpha ^ { 2 } + \beta ^ { 2 } - r ^ { 2 } \right) = 0,

which is a quadratic in k. If k1k _ { 1 } and k2k _ { 2 } are its roots and the line (i) meets circle at A and B, then PA=k1P A = k _ { 1 } and PB=k2P B = k _ { 2 }.

\therefore PAPB=k1k2=P A \cdot P B = k _ { 1 } k _ { 2 } =Products of roots=α2+β2r2= \alpha ^ { 2 } + \beta ^ { 2 } - r ^ { 2 }.

Trick : As we know from figure, .