Solveeit Logo

Question

Physics Question on laws of motion

A light unstretchable string passing over a smooth light pulley connects two blocks of masses m1m_1 and m2m_2. If the acceleration of the system is g8\frac{g}{8}, then the ratio of the masses m2m1\frac{m_2}{m_1} is:

A

9 : 7

B

4 : 3

C

5 : 3

D

8 : 1

Answer

9 : 7

Explanation

Solution

Step 1: Equation for acceleration The acceleration of the system is given by:

asys=(m2m1)m1+m2g.a_{\text{sys}} = \frac{(m_2 - m_1)}{m_1 + m_2} \cdot g.

Substitute asys=g8a_{\text{sys}} = \frac{g}{8}:

(m2m1)m1+m2g=g8.\frac{(m_2 - m_1)}{m_1 + m_2} \cdot g = \frac{g}{8}.

Cancel gg from both sides:

m2m1m1+m2=18.\frac{m_2 - m_1}{m_1 + m_2} = \frac{1}{8}.

Step 2: Solve for m2m1\frac{m_2}{m_1} Rearrange the equation:

8(m2m1)=m1+m2.8(m_2 - m_1) = m_1 + m_2.

Simplify:

8m28m1=m1+m2.8m_2 - 8m_1 = m_1 + m_2.

Combine like terms:

8m2m2=8m1+m1.8m_2 - m_2 = 8m_1 + m_1.

7m2=9m1.7m_2 = 9m_1.

Take the ratio:

m2m1=97.\frac{m_2}{m_1} = \frac{9}{7}.

Final Answer: m2m1=9:7\frac{m_2}{m_1} = 9 : 7.