Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A light rod of length ll has two masses m1m_1 and m2m_2 attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is -

A

m1m2m1+m2l2\frac{m_1 m_2}{m_1 + m_2} l^2

B

m1+m2m1m2l2\frac{m_1 + m_2}{m_1 m_2} l^2

C

(m1+m2)l2(m_1 + m_2) l^2

D

m1m2l2\sqrt{m_1 m_2} l^2

Answer

m1m2m1+m2l2\frac{m_1 m_2}{m_1 + m_2} l^2

Explanation

Solution

m1r1=m2(lr2)m_{1}r_{1} = m_{2 } \left(l -r_{2}\right)
(m1+m2)r1=m2r\left(m_{1} + m_{2}\right)r_{1} = m_{2}r
r1=m2lm1+m2r_{1} = \frac{m_{2}l}{m_{1} + m_{2}}
and r2=rr1=rm2lm1+m2=m1lm1+m2r_{2} =r - r_{1} = r - \frac{m_{2}l}{m_{1}+m_{2}} = \frac{m_{1}l}{m_{1} +m_{2}}
So I=I1+I2I = I_{1} + I_{2}
=m1r12+m2r22=m_{1}r_{1}^{2} + m_{2}r_{2}^{2}
=m1(m2lm1+m2)2+m2(m1lm1+m2)2=m1m2l2m1+m2=m_{1} \left(\frac{m_{2}l}{m_{1}+m_{2}}\right)^{2} + m_{2}\left(\frac{m_{1}l}{m_{1}+m_{2}}\right)^{2} = \frac{m_{1}m_{2}l^{2}}{m_{1}+m_{2}}