Solveeit Logo

Question

Question: A light of wavelength\({\text{12818}}\,{{\text{A}}^{\text{o}}}\)is emitted when the electron of a hy...

A light of wavelength12818Ao{\text{12818}}\,{{\text{A}}^{\text{o}}}is emitted when the electron of a hydrogen atom drop from fifth to third quantum level. Find the wavelength of the photon emitted when an electron falls from third to ground level?
A. 1025\buildrelA{\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}
B. 2050\buildrelA{\text{2050}}\,{\buildrel _{\circ} \over {\mathrm{A}}}
C. 1320\buildrelA{\text{1320}}\,{\buildrel _{\circ} \over {\mathrm{A}}}
D. 2460\buildrelA{\text{2460}}\,{\buildrel _{\circ} \over {\mathrm{A}}}

Explanation

Solution

We will determine the value of Rydberg constant by using the wavelength formula. Then by using the same formula and value of the calculated Rydberg constant we will determine the wavelength of the photon for the transition from third to ground level.
Formula used: 1λ=RH[1nLower21nhigher2]\dfrac{{\text{1}}}{{{\lambda }}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]

Complete answer
\buildrelA{\buildrel _{\circ} \over {\mathrm{A}}}
The formula to determine the wavelength of transitions in hydrogen spectrum is as follows:
1λ=RH[1nLower21nhigher2]\dfrac{{\text{1}}}{{{\lambda }}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]
where,
λ{{\lambda }} is the wavelength.
RH{{\text{R}}_{\text{H}}} is the Rydberg constant.
The value of the Rydberg constant is .
nlower{{\text{n}}_{{\text{lower}}}} is the principle quantum of the energy level in which the electron comes.
nhigher{{\text{n}}_{{\text{higher}}}} is the principle quantum of the energy level from which the electron comes.

Determine the Rydberg constant. Value as follows:
For the transition n5n3{{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}},
Substitute 12818\buildrelA{\text{12818}}{{\buildrel _{\circ} \over {\mathrm{A}}}} for wavelength, 33 for nlower{{\text{n}}_{{\text{lower}}}} and 55 for nhigher{{\text{n}}_{{\text{higher}}}}.
112818\buildrelA=RH[132152]\dfrac{{\text{1}}}{{12818\,{\buildrel _{\circ} \over {\mathrm{A}}}}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{{\text{1}}}{{{5^2}}}} \right]
112818=RH[259225]\Rightarrow \dfrac{{\text{1}}}{{12818}} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{25 - 9}}{{225}}} \right]
RH=22512818\buildrelA×16\Rightarrow {{\text{R}}_{\text{H}}}\,\, = \,\dfrac{{225}}{{12818\,{\buildrel _{\circ} \over {\mathrm{A}}}\, \times \,16}}
RH=1.1×103\buildrelA\Rightarrow {{\text{R}}_{\text{H}}}\,\, = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}
So, the Rydberg constant is 1.1×103\buildrelA\dfrac{1.1 \times {10^{ - 3}}}{{\buildrel _{\circ} \over {\mathrm{A}}}}.
For the transition n3n1{{\text{n}}_3}\, \to {{\text{n}}_1},
Substitute for Rydberg constant, 11 for nlower{{\text{n}}_{{\text{lower}}}} and 33 for nhigher{{\text{n}}_{{\text{higher}}}}.
1λ=1.1×103\buildrelA×[132112]\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times\left[ {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{{\text{1}}}{{{1^2}}}} \right]
1λ=1.1×103\buildrelA×[919]\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}\,}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times \left[ {\dfrac{{9 - 1}}{9}} \right]
1λ=1.1×103\buildrelA×89\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \dfrac{1.1 \times {10^{ - 3}}}{{\buildrel _{\circ} \over {\mathrm{A}}}}\times \dfrac{8}{9}\,
1λ=9.75×104/\buildrelA\Rightarrow \dfrac{{\text{1}}}{{{\lambda }}} = \,\,9.75 \times {10^{ - 4}}/{\buildrel _{\circ} \over {\mathrm{A}}}
λ=1025\buildrelA\Rightarrow {{\lambda }} = 1025\,{\buildrel _{\circ} \over {\mathrm{A}}}
So, the wavelength of the photon emitted when electron falls from third to ground level is 1025\buildrelA{\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}}.

Therefore, option (A) 1025\buildrelA{\text{1025}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}} is correct.

Note: The relation between energy and wavelength is as follows: E = hcλ{\text{E = }}\dfrac{{{\text{hc}}}}{{{\lambda }}} . Wavelength and energy are inversely proportional. Wavelength of n5n3{{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}}transition is 12818\buildrelA{\text{12818}}\,\,{\buildrel _{\circ} \over {\mathrm{A}}} whereas the wavelength of n3n1{{\text{n}}_3}\, \to {{\text{n}}_1}transition is 1025\buildrelA{\text{1025}}\,{\buildrel _{\circ} \over {\mathrm{A}}} means high energy is required for n3n1{{\text{n}}_3}\, \to {{\text{n}}_1} transition because lower energy are more stable. In hydrogen, the lines arise when electron comes from third energy level to lower energy level of Principle quantum number one n3n1{{\text{n}}_3}\, \to {{\text{n}}_1} is known as Lyman series. The lines arise when electron comes from fifth energy level to lower energy level of Principle quantum number three n5n3{{\text{n}}_{\text{5}}}\, \to {{\text{n}}_{\text{3}}} is known as Paschen series.