Solveeit Logo

Question

Question: A light and smooth insulating rod $PQ$ of length $R$ is fixed as a chord in a circular region of rad...

A light and smooth insulating rod PQPQ of length RR is fixed as a chord in a circular region of radius RR. CC is mid-point of the rod. Answer the following questions. Magnetic field B=2tB=2t exists in the circular region.

A

3/4

B

3/2

C

4/3

D

2/3

Answer

3/2

Explanation

Solution

The induced electric field magnitude in a circular region with a time-varying magnetic field B(t)B(t) is given by E(r)=r2dBdtE(r) = \frac{r}{2} \frac{dB}{dt}, where rr is the distance from the center. Given B=2tB = 2t, so dBdt=2\frac{dB}{dt} = 2. Thus, E(r)=r2(2)=rE(r) = \frac{r}{2}(2) = r.

Let the origin O be at the center of the circular region. The rod PQ is a chord of length RR in a circle of radius RR. The distance dd from the center O to the chord PQ is found using the Pythagorean theorem: d2+(R2)2=R2d^2 + (\frac{R}{2})^2 = R^2, which gives d=32Rd = \frac{\sqrt{3}}{2}R. Let the chord PQ lie along the line y=d=32Ry = -d = -\frac{\sqrt{3}}{2}R. The coordinates of P and C are P(R2,32R)P(-\frac{R}{2}, -\frac{\sqrt{3}}{2}R) and C(0,32R)C(0, -\frac{\sqrt{3}}{2}R).

The induced electric field is tangential. If we assume the magnetic field is into the page and increasing, the induced electric field is clockwise. Thus, E=yi^xj^\vec{E} = y\hat{i} - x\hat{j}. The magnitude is E=y2+(x)2=x2+y2=r|\vec{E}| = \sqrt{y^2 + (-x)^2} = \sqrt{x^2+y^2} = r.

The induced emf between P and C is EPC=PCEdl\mathcal{E}_{PC} = \int_P^C \vec{E} \cdot d\vec{l}. The path from P to C is along the rod, so y=32Ry = -\frac{\sqrt{3}}{2}R and dl=dxi^d\vec{l} = dx\hat{i}. EPC=R/20(yi^xj^)(dxi^)=R/20ydx\mathcal{E}_{PC} = \int_{-R/2}^{0} (y\hat{i} - x\hat{j}) \cdot (dx\hat{i}) = \int_{-R/2}^{0} y dx. Substituting y=32Ry = -\frac{\sqrt{3}}{2}R: EPC=R/20(32R)dx=(32R)[x]R/20=(32R)(0(R2))=(32R)(R2)=34R2\mathcal{E}_{PC} = \int_{-R/2}^{0} (-\frac{\sqrt{3}}{2}R) dx = (-\frac{\sqrt{3}}{2}R) [x]_{-R/2}^{0} = (-\frac{\sqrt{3}}{2}R) (0 - (-\frac{R}{2})) = (-\frac{\sqrt{3}}{2}R)(\frac{R}{2}) = -\frac{\sqrt{3}}{4}R^2.

The magnitude of the induced emf is EPC=34R2|\mathcal{E}_{PC}| = \frac{\sqrt{3}}{4}R^2.

The problem states the magnitude is abtR2\frac{\sqrt{a}}{b}tR^2. This implies that the induced emf is time-dependent. However, with B=2tB=2t, the calculated emf is time-independent. This suggests a potential typo in the question.

If we assume the magnetic field is B=2t2B = 2t^2, then dBdt=4t\frac{dB}{dt} = 4t. The induced electric field magnitude is E(r)=r2dBdt=r2(4t)=2rtE(r) = \frac{r}{2} \frac{dB}{dt} = \frac{r}{2}(4t) = 2rt. The induced emf between P and C would be: EPC=PCEdl=R/20(yi^xj^)(dxi^)\mathcal{E}_{PC} = \int_P^C \vec{E} \cdot d\vec{l} = \int_{-R/2}^{0} (y\hat{i} - x\hat{j}) \cdot (dx\hat{i}) where y=32Ry = -\frac{\sqrt{3}}{2}R and E=2rtt^\vec{E} = 2rt \hat{t}. The tangential component of E\vec{E} at a point (x,y)(x,y) is Et=EcosθE_t = E \cos \theta, where θ\theta is the angle between the tangential direction and the x-axis. In our coordinate system, the tangential direction is given by t^=xi^+yj^r\hat{t} = \frac{-x\hat{i} + y\hat{j}}{r}. So E=Et^=2rtxi^+yj^r=2t(xi^+yj^)\vec{E} = E \hat{t} = 2rt \frac{-x\hat{i} + y\hat{j}}{r} = 2t(-x\hat{i} + y\hat{j}). Edl=(2t(xi^+yj^))(dxi^)=2txdx\vec{E} \cdot d\vec{l} = (2t(-x\hat{i} + y\hat{j})) \cdot (dx\hat{i}) = -2tx dx. EPC=R/202txdx=2t[x22]R/20=2t(0(R/2)22)=2t(R28)=14tR2\mathcal{E}_{PC} = \int_{-R/2}^{0} -2tx dx = -2t [\frac{x^2}{2}]_{-R/2}^{0} = -2t (0 - \frac{(-R/2)^2}{2}) = -2t (-\frac{R^2}{8}) = \frac{1}{4}tR^2. This is not matching the expected form.

Let's re-evaluate the induced electric field. For a magnetic field B=B(t)k^\vec{B} = B(t)\hat{k}, the induced electric field is E=E(r)ϕ^\vec{E} = E(r)\hat{\phi}, where ϕ^\hat{\phi} is the azimuthal unit vector. E(r)=r2dBdtE(r) = \frac{r}{2} \frac{dB}{dt}. If B=2tB = 2t, E(r)=rE(r) = r. If B=2t2B = 2t^2, E(r)=2rtE(r) = 2rt. The rod PQ is along the line y=d=32Ry = -d = -\frac{\sqrt{3}}{2}R, from x=R/2x = -R/2 to x=0x=0. The tangential direction ϕ^\hat{\phi} is perpendicular to the radius vector r=xi^+yj^\vec{r} = x\hat{i} + y\hat{j}. The direction of the rod is along the x-axis, so dl=dxi^d\vec{l} = dx\hat{i}. The tangential unit vector ϕ^\hat{\phi} at a point (x,y)(x,y) is yi^+xj^r\frac{-y\hat{i} + x\hat{j}}{r}. So, E=E(r)ϕ^=E(r)yi^+xj^r\vec{E} = E(r) \hat{\phi} = E(r) \frac{-y\hat{i} + x\hat{j}}{r}.

If B=2tB=2t, E(r)=rE(r)=r. E=ryi^+xj^r=yi^+xj^\vec{E} = r \frac{-y\hat{i} + x\hat{j}}{r} = -y\hat{i} + x\hat{j}. Edl=(yi^+xj^)(dxi^)=ydx\vec{E} \cdot d\vec{l} = (-y\hat{i} + x\hat{j}) \cdot (dx\hat{i}) = -y dx. EPC=R/20ydx=R/20(32R)dx=32RR/20dx=32R[R2]=34R2\mathcal{E}_{PC} = \int_{-R/2}^{0} -y dx = \int_{-R/2}^{0} -(-\frac{\sqrt{3}}{2}R) dx = \frac{\sqrt{3}}{2}R \int_{-R/2}^{0} dx = \frac{\sqrt{3}}{2}R [\frac{R}{2}] = \frac{\sqrt{3}}{4}R^2. (Magnitude)

If B=2t2B=2t^2, E(r)=2rtE(r)=2rt. E=2rtyi^+xj^r=2t(yi^+xj^)\vec{E} = 2rt \frac{-y\hat{i} + x\hat{j}}{r} = 2t(-y\hat{i} + x\hat{j}). Edl=(2t(yi^+xj^))(dxi^)=2tydx\vec{E} \cdot d\vec{l} = (2t(-y\hat{i} + x\hat{j})) \cdot (dx\hat{i}) = -2ty dx. EPC=R/202tydx=R/202t(32R)dx=3tRR/20dx\mathcal{E}_{PC} = \int_{-R/2}^{0} -2ty dx = \int_{-R/2}^{0} -2t(-\frac{\sqrt{3}}{2}R) dx = \sqrt{3}tR \int_{-R/2}^{0} dx. EPC=3tR[x]R/20=3tR(0(R2))=3tR(R2)=32tR2\mathcal{E}_{PC} = \sqrt{3}tR [x]_{-R/2}^{0} = \sqrt{3}tR (0 - (-\frac{R}{2})) = \sqrt{3}tR (\frac{R}{2}) = \frac{\sqrt{3}}{2}tR^2.

The magnitude of the induced emf is 32tR2\frac{\sqrt{3}}{2}tR^2. Comparing this with the given form abtR2\frac{\sqrt{a}}{b}tR^2: 32=ab\frac{\sqrt{3}}{2} = \frac{\sqrt{a}}{b}. This implies a=3\sqrt{a} = \sqrt{3} and b=2b=2. So a=3a=3 and b=2b=2. The value of ab=32\frac{a}{b} = \frac{3}{2}. This assumes the magnetic field was B=2t2B=2t^2. Given the options, this is the most plausible interpretation.