Solveeit Logo

Question

Physics Question on simple harmonic motion

A lift is ascending with an acceleration equal to g/3 What will be the time period of a simple pendulum suspended from its ceiling if its time period in stationary lift isT:

A

T4\frac{T}{4}

B

(34)T\left( \frac{\sqrt{3}}{4} \right)T

C

(32)T\left( \frac{\sqrt{3}}{2} \right)T

D

T2\frac{T}{2}

Answer

(32)T\left( \frac{\sqrt{3}}{2} \right)T

Explanation

Solution

Here: Acceleration of lift (a)=g/3(a)=g\text{/}3 Initial time period T1=T{{T}_{1}}=T The effective acceleration when it is ascending g2=ga=g83=2g3{{g}_{2}}=g-a=g-\frac{8}{3}=\frac{2g}{3} Time period of simple pendulum T=2πlgT=2\pi \sqrt{\frac{l}{g}} or T1gT\propto \frac{\sqrt{1}}{g} Hence T1T2=g2g1=23gg\frac{{{T}_{1}}}{{{T}_{2}}}=\sqrt{\frac{{{g}_{2}}}{{{g}_{1}}}}=\sqrt{\frac{\frac{2}{3}g}{g}} or T2=(32)T1=(32)T{{T}_{2}}=\left( \sqrt{\frac{3}{2}} \right){{T}_{1}}=\left( \sqrt{\frac{3}{2}} \right)T