Solveeit Logo

Question

Question: Let f be a differentiable function satisfying the functional rule f(xy) = f(x) + f(y) + $\frac{x+y-...

Let f be a differentiable function satisfying the functional rule

f(xy) = f(x) + f(y) + x+y1xy\frac{x+y-1}{xy} \forallx, y>0

and f'(1) = 2. Find the value of [f(e100^{100})] .

Note : [k] denotes the greatest integer less than or equal to k.

Answer

99

Explanation

Solution

  1. Given:

    f(xy)=f(x)+f(y)+x+y1xyf(xy) = f(x) + f(y) + \frac{x+y-1}{xy} for all x,y>0x,y>0 and f(1)=2f'(1)=2.

  2. Finding f(1)f(1):

    Set y=1y=1:

    f(x)=f(x)+f(1)+x+11x    f(1)+xx=0    f(1)+1=0.f(x) = f(x) + f(1) + \frac{x+1-1}{x} \implies f(1) + \frac{x}{x} = 0 \implies f(1) + 1 = 0.

    Thus, f(1)=1f(1)=-1.

  3. Guessing a form:

    Assume:

    f(x)=clnx+u(x).f(x) = c\ln x + u(x).

    We desire u(x)u(x) such that the extra term produces x+y1xy\frac{x+y-1}{xy}.

    Guess u(x)=1xu(x)= -\frac{1}{x}. Then,

    f(x)=clnx1x.f(x)= c\ln x -\frac{1}{x}.
  4. Verification:

    Compute f(xy)=cln(xy)1xy=clnx+clny1xyf(xy)= c\ln(xy) -\frac{1}{xy} = c\ln x + c\ln y -\frac{1}{xy}.

    Also,

    f(x)+f(y)=clnx1x+clny1y.f(x) + f(y) = c\ln x - \frac{1}{x} + c\ln y - \frac{1}{y}.

    Then,

    f(x)+f(y)+x+y1xy=clnx+clny(1x+1y)+x+y1xy.f(x)+f(y) + \frac{x+y-1}{xy} = c\ln x + c\ln y - \left(\frac{1}{x}+\frac{1}{y}\right) + \frac{x+y-1}{xy}.

    Since

    x+y1xy(1x+1y)=1xy,\frac{x+y-1}{xy} - \left(\frac{1}{x}+\frac{1}{y}\right) = -\frac{1}{xy},

    we get

    f(x)+f(y)+x+y1xy=clnx+clny1xy,f(x)+f(y)+\frac{x+y-1}{xy}= c\ln x + c\ln y -\frac{1}{xy},

    which matches f(xy)f(xy).

  5. Determine cc:

    Differentiate:

    f(x)=cx+1x2.f'(x)= \frac{c}{x} + \frac{1}{x^2}.

    At x=1x=1,

    f(1)=c+1=2    c=1.f'(1)= c + 1 = 2 \implies c=1.
  6. Resulting Function:

    f(x)=lnx1x.f(x)= \ln x - \frac{1}{x}.
  7. Compute f(e100)f(e^{100}):

    f(e100)=ln(e100)1e100=1001e100.f(e^{100}) = \ln(e^{100}) - \frac{1}{e^{100}} = 100 - \frac{1}{e^{100}}.

    Since 1e100\frac{1}{e^{100}} is positive yet extremely small,

    1001e100<100,100 - \frac{1}{e^{100}} < 100,

    so the greatest integer less than or equal to f(e100)f(e^{100}) is 99.