Solveeit Logo

Question

Question: A lens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of d...

A lens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of diameter in central region of lens is covered by a black paper. Focal length of lens intensity of image now will be respectively;

A

B

C

f and

D

Answer

f and

Explanation

Solution

: Facal length of the lens remains same. Intensity of image formed by lens is proportional to area exposed to incident light from object.

or

Initial area, A1=π(d2)2=πd24\mathrm { A } _ { 1 } = \pi \left( \frac { \mathrm { d } } { 2 } \right) ^ { 2 } = \frac { \pi \mathrm { d } ^ { 2 } } { 4 }

After blocking exposed area,

A2=π(d/2)24=πd24πd216=3π d216\mathrm { A } _ { 2 } = \frac { \pi ( \mathrm { d } / 2 ) ^ { 2 } } { 4 } = \frac { \pi \mathrm { d } ^ { 2 } } { 4 } - \frac { \pi \mathrm { d } ^ { 2 } } { 16 } = \frac { 3 \pi \mathrm {~d} ^ { 2 } } { 16 }

I2I1=A2 A1=3π d216π d24=34\therefore \frac { \mathrm { I } _ { 2 } } { \mathrm { I } _ { 1 } } = \frac { \mathrm { A } _ { 2 } } { \mathrm {~A} _ { 1 } } = \frac { \frac { 3 \pi \mathrm {~d} ^ { 2 } } { 16 } } { \frac { \pi \mathrm {~d} ^ { 2 } } { 4 } } = \frac { 3 } { 4 }

or I2=34I1=34I(I1=I)\mathrm { I } _ { 2 } = \frac { 3 } { 4 } \mathrm { I } _ { 1 } = \frac { 3 } { 4 } \mathrm { I } \quad \left( \because \mathrm { I } _ { 1 } = \mathrm { I } \right)

Hence, focal length of lens = f, intensity of the image