Solveeit Logo

Question

Physics Question on Refraction of Light

A lens forms real and virtual images of an object, when the object is at u1u_{1} and u2u_{2} distances respectively. If the size of the virtual image is double that of the real image, then the focal length of the lens is (take, the magnification of the real image as mm )

A

(u1+u22)m\left(\frac{u_{1} + u_{2}}{2}\right)m

B

(u1u23)2m\left(\frac{u_{1}- u_{2}}{3}\right)2m

C

(u1u22)3m\left(\frac{u_{1} - u_{2}}{2}\right)3m

D

(u1+u23)2m\left(\frac{u_{1} + u_{2}}{3}\right)2m

Answer

(u1u22)3m\left(\frac{u_{1} - u_{2}}{2}\right)3m

Explanation

Solution

Lens maker formula, 1v1u=1f\frac{1}{v}-\frac{1}{u}=\frac{1}{f}
Case 1 Real image vv and ff are positive, uu is negative, so
1v1+1u1=1f\frac{1}{v_{1}}+\frac{1}{u_{1}}=\frac{1}{f}
u1v1+1=u1f\Rightarrow \frac{u_{1}}{v_{1}}+1=\frac{u_{1}}{f}
Since, magnification for real image,
m=v1u1m=\frac{-v_{1}}{u_{1}}
So. 1m+1=u1f-\frac{1}{m}+1=\frac{u_{1}}{f} ...(i)
Case 2 Virtual image, as image is formed infront of lens both uu and vv are negative, so
1v21u2=1f-\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f}
or u2v21=u2f\frac{-u_{2}}{v_{2}}-1=\frac{u_{2}}{f}
Given, size of virtual image =2×=2 \times size of real image
So, 12m+1=u2f-\frac{1}{2 m}+1=\frac{-u_{2}}{f} ...(ii)
Adding Eqs. (i) and (ii), we get
1m12m+11=u1fu2f-\frac{1}{m}-\frac{1}{2 m}+1-1 =\frac{u_{1}}{f}-\frac{u_{2}}{f}
or 32m=u1u2f\frac{-3}{2 m} =\frac{u_{1}-u_{2}}{f}
or f=(u1u2)3m2f=\frac{\left(u_{1}-u_{2}\right) 3 m}{2}