Solveeit Logo

Question

Physics Question on Dimensional Analysis

A length-scale ()(\ell) depends on the permittivity (ε)(\varepsilon) of a dielectric material, Boltzmann constant (kB)\left( k _{ B }\right), the absolute temperature (T)(T), the number per unit volume (n)(n) of certain charged particles, and the charge (q)(q) carried by each of the particles. Which of the following expressions (s) for \ell is (are) dimensionally correct?

A

=(nq2εkBT)\ell=\sqrt{\left(\frac{ nq ^{2}}{\varepsilon k _{ B } T }\right)}

B

=(εkBTnq2)\ell=\sqrt{\left(\frac{\varepsilon k _{ B } T }{ nq ^{2}}\right)}

C

=(q2εn2/3kBT)\ell=\sqrt{\left(\frac{q^{2}}{\varepsilon n^{2 / 3} k_{B} T}\right)}

D

=(q2sn1/3kBT)\ell=\sqrt{\left(\frac{q^{2}}{\operatorname{sn}^{1 / 3} k_{B} T}\right)}

Answer

=(q2sn1/3kBT)\ell=\sqrt{\left(\frac{q^{2}}{\operatorname{sn}^{1 / 3} k_{B} T}\right)}

Explanation

Solution

αεakbTcndqe\ell \alpha \varepsilon^{a} k ^{ b } T ^{ c } n ^{ d } q ^{ e }
(A) =L3×A2T2M1A2T4L3M1L2T2θ1θ\ell=\sqrt{\frac{L^{-3} \times A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}
=1L2=1L\ell=\sqrt{\frac{1}{L^{2}}}=\frac{1}{L}
(B) =εkBTnq2\ell =\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}
=(M1A2T4L3)M1L2T2θ1θL3A1T2=\sqrt{\frac{\left(M^{-1} A^{2} T^{4} L^{-3}\right) M^{1} L^{2} T^{-2} \theta^{-1} \theta}{L^{-3} A^{1} T^{2}}}
=L2=L=\sqrt{L^{2}}=L
(C) =A2T2M1A2T4L3L2M1L2T2θ1θ\ell=\sqrt{\frac{A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} L^{-2} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}
(D) =A2T2M1A2T4L3L1M+1L2T2θ1θ\ell=\sqrt{\frac{ A ^{2} T ^{2}}{ M ^{-1} A ^{2} T ^{4} L^{-3} L ^{-1} M ^{+1} L ^{2} T ^{-2} \theta^{-1} \theta}}
=L2=L=\sqrt{L^{2}}= L

So, the correct option is (D): =(q2sn1/3kBT)\ell=\sqrt{\left(\frac{q^{2}}{\operatorname{sn}^{1 / 3} k_{B} T}\right)}