Solveeit Logo

Question

Question: A: Length of focal chord of a parabola \[{{y}^{2}}=8x\] making an angle of \({{60}^{\circ }}\) with ...

A: Length of focal chord of a parabola y2=8x{{y}^{2}}=8x making an angle of 60{{60}^{\circ }} with x-axis is 323\dfrac{32}{3} .
R: Length of focal chord of parabola y2=4ax{{y}^{2}}=4ax making an angle α\alpha with x-axis is 4acosec2(α)4a\cos e{{c}^{2}}\left( \alpha \right) .

Explanation

Solution

Take the coordinate of focal chord A and B as (at2,2at)\left( a{{t}^{2}},2at \right) parametric form. Find the length of focal chord AB. Take slope as equal to t and thus substitute and prove 4acos2α4a{{\cos }^{2}}\alpha . Put α=60\alpha ={{60}^{\circ }} and get the value of a, to get the value of 323\dfrac{32}{3}.

Complete step by step answer:

We have been given the equation of parabola as y2=8x{{y}^{2}}=8x .
The length of the focal chord, t1t2=1{{t}_{1}}{{t}_{2}}=-1 i.e. t2=1t1{{t}_{2}}=\dfrac{-1}{{{t}_{1}}} ,
Hence, if A and B are the coordinate of the point on the parabola then. We can take their coordinate as,
A(at12,2at1)A\left( at_{1}^{2},2a{{t}_{1}} \right) and B(at22,2at2)B\left( at_{2}^{2},2a{{t}_{2}} \right) .
But we found out that t2=1t1{{t}_{2}}=\dfrac{-1}{{{t}_{1}}} .
\therefore coordinate of B changes to, B(a(1t1)2,2a(1t1))(at12,2at1)B\equiv \left( a{{\left( \dfrac{-1}{{{t}_{1}}} \right)}^{2}},2a\left( \dfrac{-1}{{{t}_{1}}} \right) \right)\equiv \left( \dfrac{a}{t_{1}^{2}},\dfrac{-2a}{{{t}_{1}}} \right).
Let’s assume t1=1t2=t{{t}_{1}}=\dfrac{-1}{{{t}_{2}}}=t.
Thus, we can write the coordinate as A(at2,2at)A\left( a{{t}^{2}},2at \right) and B(at2,2at)B\left( \dfrac{a}{{{t}^{2}}},\dfrac{-2a}{t} \right) .
So, here (x1,y1)=(at2,2at)\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},\dfrac{-2a}{t} \right), (x2,y2)=(at2,2at)\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right).
The focus of the parabola is given as (a.0)\left( a.0 \right) .
Now, let us find the length of AB by using the distance formula,
i.e. distance AB=(x2x1)2+(y2y1)2=(at2at2)2+(2at+2at)2AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}=\sqrt{{{\left( a{{t}^{2}}-\dfrac{a}{{{t}^{2}}} \right)}^{2}}+{{\left( 2at+\dfrac{2a}{t} \right)}^{2}}}

& =\sqrt{{{a}^{2}}{{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}+{{\left( 2a \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}} \\\ & \Rightarrow \sqrt{{{a}^{2}}{{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}+4{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}} \\\ \end{aligned}$$ We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Similarly, ${{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$ $\Rightarrow \left| \overline{AB} \right|=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left\\{ {{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \right\\}}$ [taking ${{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$common both the terms]. $=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2 \right)}=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{4}}}$ [we know ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$] Hence it become, $AB=a{{\left( t+\dfrac{1}{t} \right)}^{2}}$ ……………… (1) Now, m = slope of line AB $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at+\dfrac{2a}{t}}{a{{t}^{2}}-\dfrac{a}{{{t}^{2}}}}=\dfrac{2a\left( t+\dfrac{1}{t} \right)}{a\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}=\dfrac{2\left( t+\dfrac{1}{t} \right)}{\left( t+\dfrac{1}{t} \right)\left( t-\dfrac{1}{t} \right)}=\dfrac{2}{t-\dfrac{1}{t}}$ . So, $\begin{aligned} & m=\dfrac{2}{t-\dfrac{1}{t}} \\\ & \Rightarrow \tan \alpha =m=\dfrac{2}{t-\dfrac{1}{t}} \\\ & \Rightarrow t-\dfrac{1}{t}=\dfrac{2}{\tan \alpha }=2\cot \alpha \\\ \end{aligned}$ We know that $\cot \theta =\dfrac{1}{\tan \theta }$ , by basic trigonometric identity. Similarly $\begin{aligned} & {{\left( t+\dfrac{1}{t} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \\\ & \Rightarrow {{\left( t+\dfrac{1}{t} \right)}^{2}}={{\left( 2\cot \alpha \right)}^{2}}+4=4{{\cot }^{2}}\alpha +4=4\left( {{\cot }^{2}}\alpha -1 \right) \\\ \end{aligned}$ We know that ${{\cot }^{2}}\alpha -1=\cos e{{c}^{2}}\alpha $ . $\therefore {{\left( t+\dfrac{1}{t} \right)}^{2}}=4\left[ {{\cot }^{2}}\alpha -1 \right]=4\cos e{{c}^{2}}\alpha $ We got the length of focal chord $AB=a{{\left( t+\dfrac{1}{t} \right)}^{2}}=4a\cos e{{c}^{2}}\alpha $ The equation of parabola given is $${{y}^{2}}=8x$$. Now let us compare it with the general equation of the parabola is ${{y}^{2}}=4ax$ . Hence, we get latus rectum $4a=8\Rightarrow a=2$ and $\alpha ={{60}^{\circ }}$ Thus, length focal chord $=4a\cos e{{c}^{2}}\alpha =4\times 2\cos e{{c}^{2}}{{60}^{\circ }}=8\cos e{{c}^{2}}{{60}^{\circ }}$ From trigonometric table we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ $\therefore \cos ec{{60}^{\circ }}=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{2}{\sqrt{3}}$ $\therefore $ Length of focal chord $8\cos e{{c}^{2}}{{60}^{\circ }}=8\times {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}=\dfrac{8\times 4}{3}=\dfrac{32}{3}$ . **Hence, it’s proved that both statement 1 and statement 2 are correct and R is the perfect reason for A.** **Note:** The angle inclination of a line is the angle formed by the intersection of the line and the x-axis, using a horizontal “run” of 1 and m for slope, The angle of inclination $\alpha ={{\tan }^{-1}}m$ or $m=\tan \alpha $. Thus, the reason why we took $\tan \alpha =slope$.