Solveeit Logo

Question

Question: $\left( \frac{cos\theta + isin\theta}{sin\theta + icos\theta} \right)^4$...

(cosθ+isinθsinθ+icosθ)4\left( \frac{cos\theta + isin\theta}{sin\theta + icos\theta} \right)^4

Answer

cos(8θ)+isin(8θ)cos(8\theta) + isin(8\theta)

Explanation

Solution

The problem asks us to simplify the given complex number expression: (cosθ+isinθsinθ+icosθ)4\left( \frac{cos\theta + isin\theta}{sin\theta + icos\theta} \right)^4

We will simplify the expression inside the parenthesis first, then apply the power of 4.

Step 1: Express the numerator in polar form. The numerator is cosθ+isinθcos\theta + isin\theta. This is already in Euler's form: Numerator=eiθ\text{Numerator} = e^{i\theta}

Step 2: Express the denominator in polar form. The denominator is sinθ+icosθsin\theta + icos\theta. We can use the trigonometric identities: sinθ=cos(π2θ)sin\theta = cos\left(\frac{\pi}{2} - \theta\right) cosθ=sin(π2θ)cos\theta = sin\left(\frac{\pi}{2} - \theta\right) Substituting these into the denominator: Denominator=cos(π2θ)+isin(π2θ)\text{Denominator} = cos\left(\frac{\pi}{2} - \theta\right) + isin\left(\frac{\pi}{2} - \theta\right) This is in Euler's form: Denominator=ei(π2θ)\text{Denominator} = e^{i\left(\frac{\pi}{2} - \theta\right)}

Step 3: Simplify the fraction inside the parenthesis. Let ZZ be the expression inside the parenthesis: Z=cosθ+isinθsinθ+icosθ=eiθei(π2θ)Z = \frac{cos\theta + isin\theta}{sin\theta + icos\theta} = \frac{e^{i\theta}}{e^{i\left(\frac{\pi}{2} - \theta\right)}} Using the property eiaeib=ei(ab)\frac{e^{ia}}{e^{ib}} = e^{i(a-b)}: Z=ei(θ(π2θ))=ei(θπ2+θ)=ei(2θπ2)Z = e^{i\left(\theta - \left(\frac{\pi}{2} - \theta\right)\right)} = e^{i\left(\theta - \frac{\pi}{2} + \theta\right)} = e^{i\left(2\theta - \frac{\pi}{2}\right)}

Step 4: Apply the power of 4 to the simplified fraction. The given expression is Z4Z^4: Z4=(ei(2θπ2))4Z^4 = \left( e^{i\left(2\theta - \frac{\pi}{2}\right)} \right)^4 Using De Moivre's Theorem, (eix)n=einx(e^{ix})^n = e^{inx}: Z4=ei4(2θπ2)=ei(8θ2π)Z^4 = e^{i \cdot 4\left(2\theta - \frac{\pi}{2}\right)} = e^{i(8\theta - 2\pi)}

Step 5: Convert the result back to trigonometric form and simplify. Using Euler's formula, eix=cosx+isinxe^{ix} = cos x + isin x: Z4=cos(8θ2π)+isin(8θ2π)Z^4 = cos(8\theta - 2\pi) + isin(8\theta - 2\pi) Since cos(x2π)=cosxcos(x - 2\pi) = cos x and sin(x2π)=sinxsin(x - 2\pi) = sin x (due to the periodicity of trigonometric functions): Z4=cos(8θ)+isin(8θ)Z^4 = cos(8\theta) + isin(8\theta)

The simplified expression is cos(8θ)+isin(8θ)cos(8\theta) + isin(8\theta).

Explanation of the solution:

  1. Convert the numerator cosθ+isinθcos\theta + isin\theta to its Euler form eiθe^{i\theta}.
  2. Convert the denominator sinθ+icosθsin\theta + icos\theta to its Euler form ei(π2θ)e^{i(\frac{\pi}{2} - \theta)} by using sinθ=cos(π2θ)sin\theta = cos(\frac{\pi}{2} - \theta) and cosθ=sin(π2θ)cos\theta = sin(\frac{\pi}{2} - \theta).
  3. Divide the Euler forms: eiθei(π2θ)=ei(θ(π2θ))=ei(2θπ2)\frac{e^{i\theta}}{e^{i(\frac{\pi}{2} - \theta)}} = e^{i(\theta - (\frac{\pi}{2} - \theta))} = e^{i(2\theta - \frac{\pi}{2})}.
  4. Raise the result to the power of 4 using De Moivre's theorem: (ei(2θπ2))4=ei4(2θπ2)=ei(8θ2π)(e^{i(2\theta - \frac{\pi}{2})})^4 = e^{i4(2\theta - \frac{\pi}{2})} = e^{i(8\theta - 2\pi)}.
  5. Convert back to trigonometric form: cos(8θ2π)+isin(8θ2π)cos(8\theta - 2\pi) + isin(8\theta - 2\pi).
  6. Use the periodicity of cosine and sine functions (cos(x2π)=cosxcos(x-2\pi) = cos x, sin(x2π)=sinxsin(x-2\pi) = sin x) to get cos(8θ)+isin(8θ)cos(8\theta) + isin(8\theta).