Question
Question: \(A = \left( {\begin{array}{*{20}{c}} { - 4}&{ - 1} \\\ 3&1 \end{array}} \right)\), then...
A = \left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\\
3&1
\end{array}} \right), then the determinant of (A2016−2A2015−A2014) is:
A)−175 B)2014 C)2016 D)−25
Solution
Take A2014 common in first step. Then you will get a matrix of power two, find the matrix. At last find its determinant and get your answer.
Complete step-by-step answer:
Let us assume that
B=(A2016−2A2015−A2014)
Taking A2014 in common
B=A2014(A2−2A−I)
Now we need to find (A2−2A−I)
(A2−2A−I) = \left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\\
3&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\\
3&1
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\\
3&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right)
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{( - 4)( - 4) + ( - 1)(3)}&{( - 4)( - 1) + ( - 1)(1)} \\\
{( - 1)(3) + (3)(1)}&{(3)( - 1) + (1)(1)}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
8&2 \\\
{ - 6}&{ - 2}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right) \\\
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{13}&3 \\\
{ - 9}&{ - 2}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
8&2 \\\
{ - 6}&{ - 2}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right) \\\
({A^2} - 2A - I) = \left( {\begin{array}{*{20}{c}}
{20}&5 \\\
{ - 15}&{ - 5}
\end{array}} \right) \\\
So B = {A^{2014}}\left( {\begin{array}{*{20}{c}}
{20}&5 \\\
{ - 15}&{ - 5}
\end{array}} \right)
Taking determinant on both sides
\left| B \right| = \left| {{A^{2014}}\left( {\begin{array}{*{20}{c}}
{20}&5 \\\
{ - 15}&{ - 5}
\end{array}} \right)} \right|
Since ∣A.B∣=∣A∣∣B∣
Therefore
\left| B \right| = \left| {{A^{2014}}} \right|\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\\
{ - 15}&{ - 5}
\end{array}} \right)} \right|
Using property ∣Bx∣=∣B∣x
\left| B \right| = {\left| A \right|^{2014}}\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\\
{ - 15}&{ - 5}
\end{array}} \right)} \right| \\\
\left| B \right| = {\left| {\left( {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\\
3&1
\end{array}} \right)} \right|^{2014}}\left| {\left( {\begin{array}{*{20}{c}}
{20}&5 \\\
{ - 15}&{ - 5}
\end{array}} \right)} \right| \\\
((−4)(1)−(−1)(3)2014)(25)
∣B∣=(−1)2014(−25)=−25
So, the correct answer is “Option D”.
Note: In order to solve such a question you must know all the properties of matrices and determinants. We used the properties ∣Ax∣=∣A∣x and ∣A.B∣=∣A∣∣B∣ in the question. In the next we may need AA−1=I. Hence, remembering all these properties is quite important also, we need to be careful while multiplying matrices as it could lead to mistakes.