Solveeit Logo

Question

Question: A laser beam propagates through a spherically symmetric media. The refraction index varies with dist...

A laser beam propagates through a spherically symmetric media. The refraction index varies with distance to the symmetry centre by the law n(r) = n0rr0\mathrm { n } _ { 0 } \frac { \mathrm { r } } { \mathrm { r } _ { 0 } }, where n0 = 1, r0 = 30 cm r0£ r £. The beam trajectory lies in the plane that includes c. At distance r1 = 80 cm the beam makes an angle f = 30° with as shown. What minimal distance does the beam reach relative to the symmetry center c –

A

0.566 m

B

0.86 m

C

1.6 m

D

0.16 m

Answer

0.566 m

Explanation

Solution

n1 sin a = n2 sin b

= R2sin(πβ)\frac { \mathrm { R } _ { 2 } } { \sin ( \pi - \beta ) } =

sin b = R2R1\frac { \mathrm { R } _ { 2 } } { \mathrm { R } _ { 1 } }sin g

n1 sin a = R2R1\frac { \mathrm { R } _ { 2 } } { \mathrm { R } _ { 1 } } × sin g × n2

n1R1sin a = n2R2 sin g =

constant

\ n0r2r0\frac { \mathrm { n } _ { 0 } \mathrm { r } ^ { 2 } } { \mathrm { r } _ { 0 } } sinf = constant

\n0R0×R12sin30\frac { \mathrm { n } _ { 0 } } { \mathrm { R } _ { 0 } } \times \mathrm { R } _ { 1 } ^ { 2 } \sin 30 =