Solveeit Logo

Question

Physics Question on Kinetic Energy

A large number of liquid drops each of radius a coalesce to form a single spherical drop of radius bb. The energy released in the process is converted into the kinetic energy of the big drop formed, the speed of the big drop is

A

4Tρ(1a1b)\sqrt{\frac{4T}{\rho }\left( \frac{1}{a}-\frac{1}{b} \right)}

B

2Tρ(1a1b)\sqrt{\frac{2T}{\rho }\left( \frac{1}{a}-\frac{1}{b} \right)}

C

Tρ(1a1b)\sqrt{\frac{T}{\rho }\left( \frac{1}{a}-\frac{1}{b} \right)}

D

6Tρ(1a1b)\sqrt{\frac{6T}{\rho }\left( \frac{1}{a}-\frac{1}{b} \right)}

Answer

6Tρ(1a1b)\sqrt{\frac{6T}{\rho }\left( \frac{1}{a}-\frac{1}{b} \right)}

Explanation

Solution

According to question 43πa3\frac{4}{3} \pi a^{3} n=43πb3 n=\frac{4}{3} \pi b^{3} n=(ba)3 n=\left(\frac{b}{a}\right)^{3} W=T.4π[na2n2]WW=T .4 \pi\left[n a^{2}-n^{2}\right] W =12mv2=1243πb3pv2=\frac{1}{2} m v^{2}=\frac{1}{2} \cdot \frac{4}{3} \pi b^{3} p v^{2} 12×43πb3pv2=T.4π[na2b2] \therefore \frac{1}{2} \times \frac{4}{3} \pi b^{3 p v^{2}=} T .4 \pi\left[n a^{2}-b^{2}\right] or v=6Tρ(na2b3b2b3)v=\sqrt{\frac{6 T}{\rho}\left(\frac{n a^{2}}{b^{3}}-\frac{b^{2}}{b^{3}}\right)} v=6Tρ(1a1b)\therefore v=\sqrt{\frac{6 T}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)}