Solveeit Logo

Question

Question: A large free mass M and a small mass m are connected to a string such that m moves in horizontal cir...

A large free mass M and a small mass m are connected to a string such that m moves in horizontal circle. Length of string is l and θ is the angle this length makes with vertical. The frequency of rotation of mass m so that M remains at rest is

A

2πmlMg2 \pi \sqrt { \frac { \mathrm { ml } } { \mathrm { Mg } } }

B

12πmgMl\frac { 1 } { 2 \pi } \sqrt { \frac { \mathrm { mg } } { \mathrm { Ml } } }

C

12πmlMg\frac { 1 } { 2 \pi } \sqrt { \frac { \mathrm { ml } } { \mathrm { Mg } } }

D

12πMgml\frac { 1 } { 2 \pi } \sqrt { \frac { \mathrm { Mg } } { \mathrm { ml } } }

Answer

12πMgml\frac { 1 } { 2 \pi } \sqrt { \frac { \mathrm { Mg } } { \mathrm { ml } } }

Explanation

Solution

Here T = Mg and T cos θ = Mg

Also T sin θ = mω2l sin θ ( radius = l sin θ)

i.e., T = mω2l

or Mg = mω2l i.e., ω = Mgml\sqrt { \frac { \mathrm { Mg } } { \mathrm { ml } } }

i.e., 2πv = Mgml\sqrt { \frac { \mathrm { Mg } } { \mathrm { ml } } } i.e., v = 12πMgml\frac { 1 } { 2 \pi } \sqrt { \frac { \mathrm { Mg } } { \mathrm { ml } } }