Solveeit Logo

Question

Question: A lamp consumes only \(50\% \)of peak power in an A.C. circuit. What is the phase difference between...

A lamp consumes only 50%50\% of peak power in an A.C. circuit. What is the phase difference between the applied voltage and the circuit current?
A. π6\dfrac{\pi }{6}
B. π3\dfrac{\pi }{3}
C. π4\dfrac{\pi }{4}
D. π2\dfrac{\pi }{2}

Explanation

Solution

Concept of power in an A.C. circuit.
Irms=I02,    Vrms=V02{I_{rms}} = \dfrac{{{I_0}}}{{\sqrt 2 }},\;\;{V_{rms}} = \dfrac{{{V_0}}}{{\sqrt 2 }}
P=Vrms  Irms  cosϕP = V{}_{rms}\;{I_{rms}}\;\cos \phi

Complete step by step answer:
Power in an A.C. circuit – The rate at which electric energy is consumed in an electric circuit is called its power.
For an A.C. circuit, we generally define instantaneous power which is the product of instantaneous voltage and instantaneous current.
Let us suppose in an A.C. circuit, the voltage and the current at any instant is
V=V0  sin  ωt I=I0  sin  (ωtϕ)  V = V{}_0\;\sin \;\omega t \\\ I = {I_0}\;\sin \;(\omega t - \phi ) \\\
Where V0{V_0} and I0{I_0}are peak values of voltage and current and ϕ\phi is the phase difference between voltage and current.
So, instantaneous power will be given by
P=VI =(V0  sin  ωt)        (  I0  sin  (ωtϕ)) =(V0  sin  ωt)        (  sin  (ωtϕ)) =V0I02  [2  sin  ωt.  sin  (ωtϕ)] =V0I02  [cosϕ    cos  (2ωtϕ)]  P = VI \\\ = \left( {{V_0}\;\sin \;\omega t} \right)\;\;\;\;\left( {\;{I_0}\;\sin \;(\omega t - \phi )} \right) \\\ = \left( {{V_0}\;\sin \;\omega t} \right)\;\;\;\;\left( {\;\sin \;(\omega t - \phi )} \right) \\\ = \dfrac{{{V_0}{I_0}}}{2}\;[2\;\sin \;\omega t.\;\sin \;(\omega t - \phi )] \\\ = \dfrac{{{V_0}{I_0}}}{2}\;[\cos \phi \; - \;\cos \;(2\omega t - \phi )] \\\
(as  2sin  A    sin  B  =  cos  (AB)cos  (A+B))- (as\;2\sin \;A\;\;\sin \;B\; = \;\cos \;(A - B) - \cos \,\;(A + B))
Average power dissipated per cycle = Average of V0I02  [cosϕcos  (2ωtϕ)]\dfrac{{{V_0}{I_0}}}{2}\;[\cos \phi - \cos \;(2\omega t - \phi )]
average [cos  (2ωtϕ)]=0[\cos \;(2\omega t - \phi )] = 0
So,

Pav=V0I02  cosϕ Pav  =  PPeak  cosϕ  {P_{av}} = \dfrac{{{V_0}{I_0}}}{2}\;\cos \phi \\\ {P_{av}}\; = \;{P_{Peak}}\;\cos \phi \\\

Where [PPeak is the peak power and PPeak =V0I0 = {V_0}{I_0}]
So, Pav ==PPeak cosϕ\cos \phi ….(1) (ϕ\phi is phase difference)
Now, according to question

Pav=50%  of  PPeak Pav=50100  ×  PPeak  {P_{av}} = 50\% \;of\;{P_{Peak}} \\\ {P_{av}} = \dfrac{{50}}{{100}}\; \times \;{P_{Peak}} \\\

Pav=12  ×  PPeak{P_{av}} = \dfrac{1}{2}\; \times \;{P_{Peak}} ….(2)
From (1)(1) and (2)(2), we have
12PPeak=PPeakcosϕ cosϕ=12 cosϕ=cosπ3 ϕ=π3  \dfrac{1}{2}{P_{Peak}} = {P_{Peak}}\,\cos \phi \\\ \Rightarrow \,\cos \phi = \dfrac{1}{2} \\\ \Rightarrow \cos \phi = \cos \dfrac{\pi }{3} \\\ \Rightarrow \phi = \dfrac{\pi }{3} \\\
So, the phase difference between applied voltage and the circuit current is π3\dfrac{\pi }{3}.

So, the correct answer is “Option B”.

Note:
Peak power =V0I02 = \dfrac{{{V_0}{I_0}}}{2} not V0I0V_0I_0
1. For pure resistive circuit,
ϕ=0 cosϕ=1  \phi = 0 \\\ \Rightarrow \cos \phi = 1 \\\
So, Pav=V0I02(1)=V0l02{P_{av}} = \dfrac{{{V_0}{I_0}}}{{\sqrt 2 }}(1) = \dfrac{{{V_0}{l_0}}}{{\sqrt 2 }}
2. For pure capacitive or pure inductive circuit,

ϕ=90 cosϕ=cos  90=0  \phi = {90^ \circ } \\\ \Rightarrow \cos \phi = \cos \;90 = 0 \\\

So, Pav=V0I02(0){P_{av}} = \dfrac{{{V_0}{I_0}}}{{\sqrt 2 }}(0)

So, the average power consumed in a purely inductive or purely capacitive circuit over a complete cycle is zero.