Solveeit Logo

Question

Question: Two balls of masses $m_1$ and $m_2$ are placed on top of one over the other (with a small gap betwee...

Two balls of masses m1m_1 and m2m_2 are placed on top of one over the other (with a small gap between them) and then dropped on to the ground. What is the ratio m1m2\frac{m_1}{m_2} for which the upper ball ultimately receives the largest possible fraction of the total energy? Take all collisions as elastic. Neglect air resistance.

A

1:1

B

1:2

C

1:3

D

1:4

Answer

1:3

Explanation

Solution

To solve this problem, we need to analyze the collisions involved. There are two main collisions:

  1. The lower ball (m2m_2) collides with the ground.
  2. The upper ball (m1m_1) collides with the lower ball (m2m_2).

Let's assume the balls are dropped from a height hh. Just before hitting the ground, both balls will have a downward velocity v0v_0, where v0=2ghv_0 = \sqrt{2gh}.

Step 1: Collision of the lower ball (m2m_2) with the ground.

The collision with the ground is elastic. This means the ball bounces back with the same speed but in the opposite direction. So, just after hitting the ground, the lower ball m2m_2 moves upwards with velocity v0v_0.

Step 2: Collision between the upper ball (m1m_1) and the lower ball (m2m_2).

Immediately after m2m_2 bounces off the ground, it moves upwards with velocity v0v_0. At this instant, the upper ball m1m_1 is still moving downwards with velocity v0v_0 (since there's a small gap, it hasn't hit m2m_2 yet).

Let's define the upward direction as positive.

Before the collision between m1m_1 and m2m_2:

  • Initial velocity of m1m_1, u1=v0u_1 = -v_0 (downwards)
  • Initial velocity of m2m_2, u2=v0u_2 = v_0 (upwards)

Since the collision is elastic, we can use the conservation of momentum and the coefficient of restitution (e=1e=1) equations. Let the final velocities after the collision be v1v_1 for m1m_1 and v2v_2 for m2m_2.

  1. Conservation of Momentum: m1u1+m2u2=m1v1+m2v2m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 m1(v0)+m2(v0)=m1v1+m2v2m_1 (-v_0) + m_2 (v_0) = m_1 v_1 + m_2 v_2 (m2m1)v0=m1v1+m2v2(Eq.1)(m_2 - m_1) v_0 = m_1 v_1 + m_2 v_2 \quad (Eq. 1)

  2. Coefficient of Restitution (e=1e=1): v2v1=(u2u1)v_2 - v_1 = -(u_2 - u_1) v2v1=(v0(v0))v_2 - v_1 = -(v_0 - (-v_0)) v2v1=2v0v_2 - v_1 = -2v_0 v1=v2+2v0(Eq.2)v_1 = v_2 + 2v_0 \quad (Eq. 2)

Substitute v1v_1 from (Eq. 2) into (Eq. 1): (m2m1)v0=m1(v2+2v0)+m2v2(m_2 - m_1) v_0 = m_1 (v_2 + 2v_0) + m_2 v_2 (m2m1)v0=m1v2+2m1v0+m2v2(m_2 - m_1) v_0 = m_1 v_2 + 2m_1 v_0 + m_2 v_2 (m2m12m1)v0=(m1+m2)v2(m_2 - m_1 - 2m_1) v_0 = (m_1 + m_2) v_2 (m23m1)v0=(m1+m2)v2(m_2 - 3m_1) v_0 = (m_1 + m_2) v_2 v2=m23m1m1+m2v0v_2 = \frac{m_2 - 3m_1}{m_1 + m_2} v_0

Now, substitute v2v_2 back into (Eq. 2) to find v1v_1: v1=m23m1m1+m2v0+2v0v_1 = \frac{m_2 - 3m_1}{m_1 + m_2} v_0 + 2v_0 v1=(m23m1+2(m1+m2)m1+m2)v0v_1 = \left( \frac{m_2 - 3m_1 + 2(m_1 + m_2)}{m_1 + m_2} \right) v_0 v1=(m23m1+2m1+2m2m1+m2)v0v_1 = \left( \frac{m_2 - 3m_1 + 2m_1 + 2m_2}{m_1 + m_2} \right) v_0 v1=(3m2m1m1+m2)v0v_1 = \left( \frac{3m_2 - m_1}{m_1 + m_2} \right) v_0

Step 3: Maximize the fraction of total energy for the upper ball.

The initial total energy of the system (potential energy before dropping) is Etotal=(m1+m2)ghE_{total} = (m_1+m_2)gh. Since v0=2ghv_0 = \sqrt{2gh}, we have gh=v02/2gh = v_0^2/2. So, Etotal=12(m1+m2)v02E_{total} = \frac{1}{2}(m_1+m_2)v_0^2.

The final kinetic energy of the upper ball (m1m_1) after the collision is KE1=12m1v12KE_1 = \frac{1}{2}m_1 v_1^2. We want to maximize the fraction F=KE1EtotalF = \frac{KE_1}{E_{total}}. F=12m1v1212(m1+m2)v02=m1v12(m1+m2)v02F = \frac{\frac{1}{2}m_1 v_1^2}{\frac{1}{2}(m_1+m_2)v_0^2} = \frac{m_1 v_1^2}{(m_1+m_2)v_0^2}

Let x=m1m2x = \frac{m_1}{m_2}. Then m1=xm2m_1 = xm_2. Substitute m1=xm2m_1 = xm_2 into the expression for v1v_1: v1=(3m2xm2xm2+m2)v0=(m2(3x)m2(x+1))v0=(3x1+x)v0v_1 = \left( \frac{3m_2 - xm_2}{xm_2 + m_2} \right) v_0 = \left( \frac{m_2(3 - x)}{m_2(x + 1)} \right) v_0 = \left( \frac{3 - x}{1 + x} \right) v_0

Now substitute this into the fraction FF: F(x)=xm2((3x1+x)v0)2(xm2+m2)v02=xm2(3x1+x)2v02m2(x+1)v02F(x) = \frac{xm_2 \left( \left( \frac{3 - x}{1 + x} \right) v_0 \right)^2}{(xm_2 + m_2) v_0^2} = \frac{x m_2 \left( \frac{3 - x}{1 + x} \right)^2 v_0^2}{m_2(x + 1) v_0^2} F(x)=x(x+1)(3x1+x)2=x(3x)2(1+x)3F(x) = \frac{x}{(x+1)} \left( \frac{3 - x}{1 + x} \right)^2 = \frac{x(3-x)^2}{(1+x)^3}

To find the maximum value of F(x)F(x), we need to differentiate F(x)F(x) with respect to xx and set the derivative to zero. F(x)=x(96x+x2)(1+x)3=9x6x2+x3(1+x)3F(x) = \frac{x(9 - 6x + x^2)}{(1+x)^3} = \frac{9x - 6x^2 + x^3}{(1+x)^3} Using the quotient rule (uv)=uvuvv2\left( \frac{u}{v} \right)' = \frac{u'v - uv'}{v^2}: u=9x6x2+x3    u=912x+3x2u = 9x - 6x^2 + x^3 \implies u' = 9 - 12x + 3x^2 v=(1+x)3    v=3(1+x)2v = (1+x)^3 \implies v' = 3(1+x)^2

F(x)=(912x+3x2)(1+x)3(9x6x2+x3)3(1+x)2((1+x)3)2F'(x) = \frac{(9 - 12x + 3x^2)(1+x)^3 - (9x - 6x^2 + x^3)3(1+x)^2}{((1+x)^3)^2} F(x)=(1+x)2[(912x+3x2)(1+x)3(9x6x2+x3)](1+x)6F'(x) = \frac{(1+x)^2 \left[ (9 - 12x + 3x^2)(1+x) - 3(9x - 6x^2 + x^3) \right]}{(1+x)^6} F(x)=(912x+3x2)(1+x)3(9x6x2+x3)(1+x)4F'(x) = \frac{(9 - 12x + 3x^2)(1+x) - 3(9x - 6x^2 + x^3)}{(1+x)^4}

Set the numerator to zero to find critical points: (912x+3x2)(1+x)3(9x6x2+x3)=0(9 - 12x + 3x^2)(1+x) - 3(9x - 6x^2 + x^3) = 0 Expand the first term: 9+9x12x12x2+3x2+3x3=93x9x2+3x39 + 9x - 12x - 12x^2 + 3x^2 + 3x^3 = 9 - 3x - 9x^2 + 3x^3 So, the equation becomes: (93x9x2+3x3)(27x18x2+3x3)=0(9 - 3x - 9x^2 + 3x^3) - (27x - 18x^2 + 3x^3) = 0 93x9x2+3x327x+18x23x3=09 - 3x - 9x^2 + 3x^3 - 27x + 18x^2 - 3x^3 = 0 Combine like terms: 9+(327)x+(9+18)x2+(33)x3=09 + (-3 - 27)x + (-9 + 18)x^2 + (3 - 3)x^3 = 0 930x+9x2=09 - 30x + 9x^2 = 0 Divide by 3: 3x210x+3=03x^2 - 10x + 3 = 0

Solve this quadratic equation for xx: x=(10)±(10)24(3)(3)2(3)x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)} x=10±100366x = \frac{10 \pm \sqrt{100 - 36}}{6} x=10±646x = \frac{10 \pm \sqrt{64}}{6} x=10±86x = \frac{10 \pm 8}{6}

Two possible values for xx: x1=10+86=186=3x_1 = \frac{10 + 8}{6} = \frac{18}{6} = 3 x2=1086=26=13x_2 = \frac{10 - 8}{6} = \frac{2}{6} = \frac{1}{3}

Let's check these values:

  • If x=3x = 3 (i.e., m1=3m2m_1 = 3m_2): v1=(331+3)v0=0v_1 = \left( \frac{3 - 3}{1 + 3} \right) v_0 = 0. If v1=0v_1=0, then KE1=0KE_1=0, which means the upper ball receives no energy. This is a minimum.

  • If x=1/3x = 1/3 (i.e., m1=m2/3m_1 = m_2/3): v1=(31/31+1/3)v0=(8/34/3)v0=2v0v_1 = \left( \frac{3 - 1/3}{1 + 1/3} \right) v_0 = \left( \frac{8/3}{4/3} \right) v_0 = 2v_0. Let's calculate the fraction of energy for x=1/3x=1/3: F(1/3)=1/3(1/3+1)(31/31+1/3)2=1/34/3(8/34/3)2F(1/3) = \frac{1/3}{(1/3+1)} \left( \frac{3-1/3}{1+1/3} \right)^2 = \frac{1/3}{4/3} \left( \frac{8/3}{4/3} \right)^2 F(1/3)=14(2)2=144=1F(1/3) = \frac{1}{4} (2)^2 = \frac{1}{4} \cdot 4 = 1. This means the upper ball receives 100% of the total energy, which is the largest possible fraction.

Thus, the ratio m1m2\frac{m_1}{m_2} for which the upper ball receives the largest possible fraction of the total energy is 1/31/3.