Solveeit Logo

Question

Mathematics Question on Conic sections

A hyperbola whose transverse axis is along the major axis of the conic, x23+y24=4\frac{x^2}{3} + \frac{y^2}{4} = 4 and has vertices at the foci of this conic. If the eccentricity of the hyperbola is 32\frac{3}{2}, then which of the following points does NOT lie on it ?

A

(0, 2)

B

(5(\sqrt{5}, 2 2)\sqrt{2} )

C

(10(\sqrt{10}, 2 3)\sqrt{3})

D

(5,23)( 5, 2 \sqrt{3} )

Answer

(5,23)( 5, 2 \sqrt{3} )

Explanation

Solution

ellipse x212+y216=1\frac{x^{2}}{12}+\frac{y^{2}}{16}=1
foci (0,±(0, \pm be ))
ee=11216=12e_{e}=\sqrt{1-\frac{12}{16}}=\frac{1}{2}
for hyperbola


eH=32e _{ H }=\frac{3}{2}
equation x2a2y2b2=1\Rightarrow \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=-1
eH=32=1+a2b2e _{ H }=\frac{3}{2}=\sqrt{1+\frac{ a ^{2}}{ b ^{2}}}
941=a2b2\Rightarrow \frac{9}{4}-1=\frac{ a ^{2}}{ b ^{2}}
a2b2=54\frac{ a ^{2}}{ b ^{2}}=\frac{5}{4}
a2=5\Rightarrow a ^{2}=5
x25y24=1\frac{ x ^{2}}{5}-\frac{ y ^{2}}{4}=-1