Solveeit Logo

Question

Mathematics Question on Conic sections

A hyperbola having the transverse axis of length 2sinθ2\, sin\, \theta, is confocal with the ellipse 3x2+4y2=123x^2 + 4y^2 = 12. Then its equation is

A

x2cosec2θy2sec2θ=1 x^{2}\, cosec^{2} \,\theta - y^{2}\, sec^{2} \,\theta = 1

B

x2sec2θy2cosec2θ=1 x^{2}\, sec^{2} \,\theta - y^{2}\,cosec^{2} \,\theta = 1

C

x2sin2θy2cos2θ=1 x^{2}\, sin^{2} \,\theta - y^{2}\,cos^{2} \,\theta = 1

D

x2cos2θy2sin2θ=1 x^{2}\, cos^{2} \,\theta - y^{2}\,sin^{2} \,\theta = 1

Answer

x2cosec2θy2sec2θ=1 x^{2}\, cosec^{2} \,\theta - y^{2}\, sec^{2} \,\theta = 1

Explanation

Solution

Equation of the ellipse is 3x2+4y2=123x^2 + 4y^2 = 12 x24+y23=1....(1)\Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{3} = 1 \quad.... \left(1\right) Eccentricity e1=134=12e_{1} = \sqrt{1-\frac{3}{4}} = \frac{1}{2} So, the foci of ellipse are (1,0)\left(1, 0\right) and (1,0)\left(- 1, 0\right) Let the equation of the required hyperbola be x2a2y2b2=1....(2)\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1 \quad .... \left(2\right) Given 2a=2sinθa=sinθ2a = 2\,sin \,\theta \Rightarrow a =\,sin \,\theta Since the ellipse (1)\left(1\right) and the hyperbola (2)\left(2\right) are confocal, so the foci of hyperbola are (1,0)\left(1, 0\right) and (1,0)\left(- 1, 0\right) too. If the eccentricity, of hyperbola be e2e_{2} then ae2=1sinθe2=1e2=cosecθae_{2} = 1 \Rightarrow \,sin \,\theta \, e_{2} = 1 \Rightarrow e_{2} = cosec\, \theta b2=a2(e221)=sin2θ(cosec2θ1)=cos2θ\therefore\quad b^{2} = a^{2} \left(e^{2}_{2} - 1\right) = sin^{2}\,\theta \left(cosec^{2} \,\theta - 1\right) = cos^{2} \,\theta \therefore \quad Required equation of the hyperbola is x2sin2θy2cos2θ=1x2cosec2θy2sec2θ=1\frac{x^{2}}{sin^{2}\,\theta } - \frac{y^{2}}{cos^{2} \,\theta } = 1 \Rightarrow x^{2}\, cosec^{2} \,\theta - y^{2}\, sec^{2} \,\theta = 1