Solveeit Logo

Question

Mathematics Question on Hyperbola

A hyperbola, having the transverse axis of length 2sinθ2 \, \sin \, \theta is confocal with the ellipse 3x2+4y2=123x^2 + 4y^2 = 12. Its equation is

A

x2sin2θy2cos2θ=1x^2 \, \sin^2 \theta - y^2 \, \cos^2 \theta = 1

B

x2cosec2θy2sec2θ=1x^2 \, cosec^2 \theta - y^2 \, \sec^2 \theta = 1

C

(x2+y2)sin2θ=1+y2(x^2 + y^2) \sin^2 \theta = 1 + y^2

D

x2cosec2θ=x2+y2sin2θx^2 \, cosec^2 \theta = x^2 + y^2 \, \sin^2 \theta

Answer

x2cosec2θy2sec2θ=1x^2 \, cosec^2 \theta - y^2 \, \sec^2 \theta = 1

Explanation

Solution

Given, 2a1=2sinθ2 a_{1}=2 \sin \theta
a1=sinθ\Rightarrow a_{1}=\sin \theta
and 3x2+4y2=12 3 x^{2}+4 y^{2}=12
x24+y23=1\Rightarrow \frac{x^2}{4}+\frac{y^2}{3}=1
Here, a2=4a^{2}=4 and b2=3 b^{2}=3
b2=a2(1e2)\therefore b^{2}=a^{2}\left(1-e^{2}\right)
3=4(1e2)\Rightarrow 3 =4\left(1-e^{2}\right)
e2=134=14\Rightarrow e^{2} =1-\frac{3}{4}=\frac{1}{4}
e=12\Rightarrow e =\frac{1}{2}
Focus, F(ae,0)=F(2×12,0)F(a e, 0) =F\left(2 \times \frac{1}{2}, 0\right)
=F(1,0)=F(1,0)
For hyperbola foci are same
a1e1=ae=1\therefore a_{1} e_{1}=a e=1
(sinθ)e1=1\therefore (\sin \theta) e_{1}=1
e1=cosecθ\Rightarrow e_{1}=cosec\, \theta
and b12=a12(e121)=a12e12a12b_{1}^{2}=a_{1}^{2}\left(e_{1}^{2}-1\right)=a_{1}^{2} e_{1}^{2}-a_{1}^{2}
b12=1sin2θ=cos2θ\Rightarrow b_{1}^{2}=1-\sin ^{2} \theta=\cos ^{2} \theta
x2a12y2b12=1\frac{x^{2}}{a_{1}^{2}}-\frac{y^{2}}{b_{1}^{2}} =1
x2sin2θy2cos2θ=1\Rightarrow \frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{\cos ^{2} \theta}=1
x2cosec2θy2sec2θ=1\Rightarrow x^{2} cosec^{2} \theta-y^{2} \sec ^{2} \theta=1