Question
Mathematics Question on Hyperbola
A hyperbola, having the transverse axis of length 2sinθ is confocal with the ellipse 3x2+4y2=12. Its equation is
A
x2sin2θ−y2cos2θ=1
B
x2cosec2θ−y2sec2θ=1
C
(x2+y2)sin2θ=1+y2
D
x2cosec2θ=x2+y2sin2θ
Answer
x2cosec2θ−y2sec2θ=1
Explanation
Solution
Given, 2a1=2sinθ
⇒a1=sinθ
and 3x2+4y2=12
⇒4x2+3y2=1
Here, a2=4 and b2=3
∴b2=a2(1−e2)
⇒3=4(1−e2)
⇒e2=1−43=41
⇒e=21
Focus, F(ae,0)=F(2×21,0)
=F(1,0)
For hyperbola foci are same
∴a1e1=ae=1
∴(sinθ)e1=1
⇒e1=cosecθ
and b12=a12(e12−1)=a12e12−a12
⇒b12=1−sin2θ=cos2θ
a12x2−b12y2=1
⇒sin2θx2−cos2θy2=1
⇒x2cosec2θ−y2sec2θ=1