Solveeit Logo

Question

Question: A hydrogen-like atom of atomic number Z is in an excited state of quantum number \(2n.\) It can emit...

A hydrogen-like atom of atomic number Z is in an excited state of quantum number 2n.2n. It can emit a maximum energy photon of 204eV204eV. If it makes a transition to a quantum state n,n, a photon of energy 40.5eV40.5eV is emitted. Find n, Z and the ground state energy (in eV) for his atom. Also, calculate the minimum energy (in eV) that can be emitted by this atom during de-excitation. Ground state energy of hydrogen atom is 13.6eV. - 13.6\,eV.
A. 3,4,10.5 eV.{\text{3,4,10}}{\text{.5 eV}}{\text{.}}
B. 8,4,10.5 eV.{\text{8,4,10}}{\text{.5 eV}}{\text{.}}
C. 2,4,10.5 eV.{\text{2,4,10}}{\text{.5 eV}}{\text{.}}
D. 2,4,15.5 eV.{\text{2,4,15}}{\text{.5 eV}}{\text{.}}

Explanation

Solution

The quantum of energy is released when an electron jumps from the higher energy level to the lower energy level. First find the energy at the ground state and later further in the solutions use the given conditions and solve accordingly finding the correlation between the known and unknown terms.

Complete step by step answer:
Let the energy at the ground state be =E1 = {E_1}
Energy released with the given condition –
E2nE1=204eV{E_{2n}} - {E_1} = 204eV
E14n2E1=204eV\dfrac{{{E_1}}}{{4{n^2}}} - {E_1} = 204eV
Take common terms from the left hand side of the equation –
E1(14n21)=204eV ..... (a){E_1}(\dfrac{1}{{4{n^2}}} - 1) = 204eV{\text{ }}.....{\text{ (a)}}
Also, given that it makes a transition to quantum state n,n, a photon of energy 40.5eV40.5eV is emitted.
E2nEn=40.8eV E14n2E1n2=40.8eV  {E_{2n}} - {E_n} = 40.8eV \\\ \dfrac{{{E_1}}}{{4{n^2}}} - \dfrac{{{E_1}}}{{{n^2}}} = 40.8eV \\\
Take E1{E_1} common from left hand side of the equation –
E1(14n21n2)=40.8eV{E_1}\left( {\dfrac{1}{{4{n^2}}} - \dfrac{1}{{{n^2}}}} \right) = 40.8eV
Simplify the above equation –
E1(34n2)=40.8eV ....(b){E_1}\left( {\dfrac{{ - 3}}{{4{n^2}}}} \right) = 40.8eV{\text{ }}....{\text{(b)}}
From the equations (a) and (b)
114n234n2=5 or 1 = 14n2+154n2\dfrac{{1 - \dfrac{1}{{4{n^2}}}}}{{\dfrac{3}{{4{n^2}}}}} = 5{\text{ or 1 = }}\dfrac{1}{{4{n^2}}} + \dfrac{{15}}{{4{n^2}}}
Simplify the above equation –
4n2=1 or n = 2\Rightarrow \dfrac{4}{{{n^2}}} = 1{\text{ or n = 2}}
Equation (b) implies –
E1=4n2340.8eV {E_1} = \dfrac{{ - 4{n^2}}}{3}40.8eV{\text{ }}
Place n=2n = 2 in the above equation –
E1=4(2)2340.8eV  E1=4(4)340.8eV      E1 = - 217.6eV   {E_1} = \dfrac{{ - 4{{(2)}^2}}}{3}40.8eV{\text{ }} \\\ {E_1} = \dfrac{{ - 4(4)}}{3}40.8eV{\text{ }} \\\ \implies {E_1}{\text{ = - 217}}{\text{.6eV }} \\\
Also, given that –
E1=(13.6)z2{E_1} = - (13.6){z^2}
Make unknown z2{z^2} the subject –
E1(13.6)=z2 z2=E1(13.6)  \dfrac{{{E_1}}}{{ - (13.6)}} = {z^2} \\\ {z^2} = \dfrac{{ - {E_1}}}{{(13.6)}} \\\
Now place the values of E1{E_1}
z2=217.613.6{z^2} = \dfrac{{ - 217.6}}{{ - 13.6}}
Negative sign on the numerator and the denominator cancels each other.

z2=217.613.6 z2=16  {z^2} = \dfrac{{217.6}}{{13.6}} \\\ {z^2} = 16 \\\

Take square root on both the sides of the equation –
z=4z = 4
Now, the minimum energy
Emin=E2nE2n1 Emin=E14n2E1(2n1)2  {E_{\min }} = {E_{2n}} - {E_{2n - 1}} \\\ {E_{\min }} = \dfrac{{{E_1}}}{{4{n^2}}} - \dfrac{{{E_1}}}{{{{(2n - 1)}^2}}} \\\
Place n=2n = 2
Emin=E14(2)2E1(2(2)1)2 Emin=E116E19  {E_{\min }} = \dfrac{{{E_1}}}{{4{{(2)}^2}}} - \dfrac{{{E_1}}}{{{{(2(2) - 1)}^2}}} \\\ {E_{\min }} = \dfrac{{{E_1}}}{{16}} - \dfrac{{{E_1}}}{9} \\\
Place the value of  E1 = - 217.6eV {\text{ }}{E_1}{\text{ = - 217}}{\text{.6eV }}in the above equations –
Emin=217.616217.69{E_{\min }} = \dfrac{{ - 217.6}}{{16}} - \dfrac{{ - 217.6}}{9}
Minus and minus becomes plus
Emin=217.616+217.69     Emin=13.6+24.17     Emin=10.5777     Emin=10.58eV  {E_{\min }} = \dfrac{{ - 217.6}}{{16}} + \dfrac{{217.6}}{9} \\\ \implies {E_{\min }} = - 13.6 + 24.17 \\\ \implies {E_{\min }} = 10.5777 \\\ \implies {E_{\min }} = 10.58eV \\\

So, the correct answer is “Option C”.

Note:
In all the transitions, electrons emit one quantum (one photon) of the energy, but the amount of energy of each of the quantum differs whenever the electron jumps from the higher to the lower level energy is emitted.