Solveeit Logo

Question

Physics Question on Atomic Physics

A hydrogen atom changes its state from n=3n = 3 to n=2n = 2. Due to recoil, the percentage change in the wavelength of emitted light is approximately 1×10n1 \times 10^{-n}. The value of nn is ______. [Given: Rhc=13.6eV,hc=1242eV nm,h=6.6×1034J s,mass of the hydrogen atom=1.6×1027kg][ \text{Given: } Rhc = 13.6 \, \text{eV}, \, hc = 1242 \, \text{eV nm}, \, h = 6.6 \times 10^{-34} \, \text{J s}, \, \text{mass of the hydrogen atom} = 1.6 \times 10^{-27} \, \text{kg} ]

Answer

The change in energy during the transition is given by:
ΔE=13.6(122132)=1.9eV\Delta E = 13.6 \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = 1.9 \, \text{eV}

The relationship between energy and wavelength is given by:
ΔE=hcλ\Delta E = \frac{hc}{\lambda}

Rearranging for λ\lambda:
λ=hcΔE\lambda = \frac{hc}{\Delta E}

To find the effect of recoil, consider the conservation of momentum:
Pi=PfP_i = P_f 0=mv+hλ0 = -mv + \frac{h}{\lambda'}

Solving for the velocity vv of the recoiling atom:
v=hmλv = \frac{h}{m\lambda'}

The total energy change ΔE\Delta E' considering kinetic energy and emitted photon energy is given by:
ΔE=12mv2+hcλ\Delta E' = \frac{1}{2} mv^2 + \frac{hc}{\lambda'}

Substituting for vv and simplifying:
ΔE=12(hmλ)2+hcλ\Delta E' = \frac{1}{2} \left( \frac{h}{m\lambda'} \right)^2 + \frac{hc}{\lambda'}

Using the energy conservation equation:
λ2ΔEhcλh22m=0\lambda'^2 \Delta E - hc\lambda' - \frac{h^2}{2m} = 0

Solving this quadratic equation for λ\lambda':
λ=hc±h2c2+4ΔEh2/2m2ΔE\lambda' = \frac{hc \pm \sqrt{h^2c^2 + 4\Delta E h^2 / 2m}}{2\Delta E}

Approximating for small changes:
λλλΔE2mc2\frac{\lambda' - \lambda}{\lambda} \approx \frac{\Delta E}{2mc^2}

Substituting the given values:
λλλ=1.9×1.6×10192×1.67×1027×(3×108)2107\frac{\lambda' - \lambda}{\lambda} = \frac{1.9 \times 1.6 \times 10^{-19}}{2 \times 1.67 \times 10^{-27} \times (3 \times 10^8)^2} \approx 10^{-7}

The percentage change in wavelength is approximately 10710^{-7}.