Solveeit Logo

Question

Question: A hydrogen atom at rest de-excites from n = 2 state to n = 1 state. Calculate the percentage error i...

A hydrogen atom at rest de-excites from n = 2 state to n = 1 state. Calculate the percentage error in calculation of momentum of photon if recoil of atom is not taken into account. The energy equivalent of rest mass of hydrogen atom is 940 MeV.

Answer

5.4 x 10^{-7}

Explanation

Solution

The energy of the electron in the nn-th state of a hydrogen atom is given by En=13.6n2E_n = -\frac{13.6}{n^2} eV.

When the hydrogen atom de-excites from n=2n=2 to n=1n=1, the energy difference is ΔE=E2E1=13.622(13.612)=3.4+13.6=10.2\Delta E = E_2 - E_1 = -\frac{13.6}{2^2} - (-\frac{13.6}{1^2}) = -3.4 + 13.6 = 10.2 eV.

If the recoil of the atom is not taken into account, the energy of the emitted photon is assumed to be equal to this energy difference. Let Ecalc=10.2E_{calc} = 10.2 eV. The momentum of the photon calculated without considering recoil is pcalc=Ecalcc=10.2 eVcp_{calc} = \frac{E_{calc}}{c} = \frac{10.2 \text{ eV}}{c}.

Now, consider the recoil of the atom. Let the initial momentum of the atom be Pi=0P_i = 0. Let the momentum of the emitted photon be pactualp_{actual} and the recoil momentum of the atom be PfP_f. By conservation of momentum, Pi=Pf+pactualP_i = P_f + p_{actual}, so 0=Pf+pactual0 = P_f + p_{actual}, which means Pf=pactualP_f = -p_{actual}. The magnitude of the recoil momentum is Pf=pactual|P_f| = p_{actual}.

By conservation of energy, the initial energy of the atom (in n=2n=2 state, at rest) is equal to the final energy (atom in n=1n=1 state, recoiling, plus the emitted photon). E2+0=E1+Katom+Ephoton,actualE_2 + 0 = E_1 + K_{atom} + E_{photon, actual}, where KatomK_{atom} is the kinetic energy of the recoiling atom and Ephoton,actualE_{photon, actual} is the actual energy of the emitted photon. Ephoton,actual=E2E1Katom=10.2 eVKatomE_{photon, actual} = E_2 - E_1 - K_{atom} = 10.2 \text{ eV} - K_{atom}.

The kinetic energy of the recoiling atom is Katom=Pf22M=pactual22MK_{atom} = \frac{P_f^2}{2M} = \frac{p_{actual}^2}{2M}, where MM is the mass of the hydrogen atom. The energy of the photon is related to its momentum by Ephoton,actual=pactualcE_{photon, actual} = p_{actual} c. Substituting these into the energy conservation equation: pactualc=10.2 eVpactual22Mp_{actual} c = 10.2 \text{ eV} - \frac{p_{actual}^2}{2M}.

The momentum calculated without recoil is pcalc=10.2 eVcp_{calc} = \frac{10.2 \text{ eV}}{c}. The actual momentum is pactualp_{actual}. The error in calculation is pcalcpactualp_{calc} - p_{actual}. From the energy equation, pactualc=10.2 eVpactual22Mp_{actual} c = 10.2 \text{ eV} - \frac{p_{actual}^2}{2M}. Divide by cc: pactual=10.2 eVcpactual22Mc=pcalcpactual22Mcp_{actual} = \frac{10.2 \text{ eV}}{c} - \frac{p_{actual}^2}{2Mc} = p_{calc} - \frac{p_{actual}^2}{2Mc}. So, pcalcpactual=pactual22Mcp_{calc} - p_{actual} = \frac{p_{actual}^2}{2Mc}.

The percentage error in the calculation of the momentum of the photon is defined as pcalcpactualpactual×100%\frac{|p_{calc} - p_{actual}|}{p_{actual}} \times 100\%. Percentage error =pactual2/(2Mc)pactual×100%=pactual2Mc×100%= \frac{p_{actual}^2 / (2Mc)}{p_{actual}} \times 100\% = \frac{p_{actual}}{2Mc} \times 100\%.

Since the recoil energy is very small compared to the photon energy, pactualp_{actual} is very close to pcalcp_{calc}. We can approximate pactualpcalc=10.2 eVcp_{actual} \approx p_{calc} = \frac{10.2 \text{ eV}}{c} in the expression for the percentage error. Percentage error 10.2 eV/c2Mc×100%=10.2 eV2Mc2×100%\approx \frac{10.2 \text{ eV}/c}{2Mc} \times 100\% = \frac{10.2 \text{ eV}}{2Mc^2} \times 100\%.

We are given that the energy equivalent of the rest mass of the hydrogen atom is 940 MeV. This means Mc2=940 MeV=940×106 eVMc^2 = 940 \text{ MeV} = 940 \times 10^6 \text{ eV}. Percentage error 10.2 eV2×940×106 eV×100%\approx \frac{10.2 \text{ eV}}{2 \times 940 \times 10^6 \text{ eV}} \times 100\%. Percentage error 10.21880×106×100%=10.21880×106×100%\approx \frac{10.2}{1880 \times 10^6} \times 100\% = \frac{10.2}{1880} \times 10^{-6} \times 100\%. Percentage error 10.21880×104%\approx \frac{10.2}{1880} \times 10^{-4} \%. 10.218800.0054255\frac{10.2}{1880} \approx 0.0054255. Percentage error 0.0054255×104%=5.4255×107%\approx 0.0054255 \times 10^{-4} \% = 5.4255 \times 10^{-7} \%.

Rounding to two significant figures, the percentage error is 5.4×107%5.4 \times 10^{-7} \%.