Solveeit Logo

Question

Question: A hunter is at (4, -1, 5) units. He observes two preys at P<sub>1</sub>(-1, 2, 0) units and P<sub>2<...

A hunter is at (4, -1, 5) units. He observes two preys at P1(-1, 2, 0) units and P2(1, 1, 4), respectively. At zero instant he starts moving in the plane of their positions with uniform speed of 5 units s-1s in a direction perpendicular to line P1P2 till he sees P1 and P2 collinear at time T. Time T is

A

0.53 s

B

0.73 s

C

0.35 s

D

0.92 s

Answer

0.53 s

Explanation

Solution

Here A\overrightarrow{A} = (- 1 - 4)i^\widehat{i} + (2 + 1)j^\widehat{j} + (0 - 5)k^\widehat{k} = -5i^\widehat{i} + 3j^\widehat{j} - 5j^\widehat{j} and B\overrightarrow{B} = (1 + 1)i^\widehat{i} + (1 - 2)j^\widehat{j} + (4 - 0)k^\widehat{k} = 2i^\widehat{i} - j^\widehat{j} + 4k^\widehat{k}

Now R = |A\overrightarrow{A}| sin θ and |A\overrightarrow{A} + B\overrightarrow{B}| = AB sin θ or sin θ = A×BABi,e.,R=AA×BAB=A×BB\frac{|\overrightarrow{A} \times \overrightarrow{B}|}{AB}i,e.,R = A\frac{|\overrightarrow{A} \times \overrightarrow{B}|}{AB} = \frac{|\overrightarrow{A} \times \overrightarrow{B}|}{B}

Now A×B\overrightarrow{A} \times \overrightarrow{B} = $\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \

  • 5 & 3 & - 5 \ 2 & - 1 & 4 \end{matrix} \right|$

= (12 - 5)i^\widehat{i} + (-10 + 20)j^\widehat{j} + (5 - 6)k^\widehat{k} = 7i^\widehat{i} + 10j^\widehat{j} - k^\widehat{k}

|A\overrightarrow{A} × B\overrightarrow{B}| = (72 + 102 + 1)1/2 = 12.25 |B\overrightarrow{B}|

= (22 + 12 + 42)1/2 = 4.58

∴ R = 12.25/4.58 = 2.67 m

Time taken to reach destination

= R/v = 2.67/5 = 0.53 s